In most animal species female germ cells are the source of mitochondrial genome for the whole body of individuals. As a source of mitochondrial DNA for future generations the mitochondria in the female germ line undergo dynamic quantitative and qualitative changes. In addition to maintaining the intact template of mitochondrial genome from one generation to another, mitochondrial role in oocytes is much more complex and pleiotropic.
View Article and Find Full Text PDFCopper (Cu) is an essential trace element required for the normal development of living organisms. Due to its redox potential, copper is a cofactor in many enzymes responsible for important processes in cells. Copper deficiency has a significant influence on the reduction or the total eradication of copper-dependent enzymes in the body, thereby inhibiting cell life processes.
View Article and Find Full Text PDFMouse prophase oocytes isolated from antral follicles may possess two alternative types of chromatin configuration: NSN configuration represents more dispersed chromatin and is characteristic mainly for growing oocytes whereas SN configuration, attained upon oocyte growth, comprises more condensed chromatin with a significant fraction concentrated around the nucleolus. Importantly, fully grown oocytes isolated from antral follicles represent a non-homogenous population in which some oocytes posses NSN-type and others SN-type of chromatin conformation. From these two, only oocytes with SN configuration are able to complete full development upon fertilization.
View Article and Find Full Text PDF