Stem Cells Int
July 2024
Acellular liver scaffolds (ALS) produced by decellularization have been successfully explored for distinct regenerative purposes. To date, it is unknown whether transplanted ALSs are affected by cirrhotic livers, either becoming cirrhotic themselves or instead remaining as a robust template for healthy cell growth after transplantation into cirrhotic rats. Moreover, little is known about the clinical course of recipient cirrhotic livers after ALS transplantation.
View Article and Find Full Text PDFLiver transplantation is the only definitive treatment for many diseases that affect this organ, however, its quantity and viability are reduced. The study of liver scaffolds based on an extracellular matrix is a tissue bioengineering strategy with great application in regenerative medicine. Collectively, recent studies suggest that liver scaffold transplantation may assist in reestablishing hepatic function in preclinical diseased animals, which represents a great potential for application as a treatment for patients with liver disease in the future.
View Article and Find Full Text PDFThe liver, a component of the gastrointestinal tract, is one of the most important organs in the human body. The liver performs over 500 functions to promote physiological homeostasis. In addition, the liver acts as a screen, by metabolizing substances carried by blood coming from the digestive tract before they enter the systemic circulation.
View Article and Find Full Text PDFOrgan decellularization is one of the most promising approaches of tissue engineering to overcome the shortage of organs available for transplantation. However, there are key hurdles that still hinder its clinical application, and the lack of hemocompatibility of decellularized materials is a central one. In this work, we demonstrate that Custodiol (HTK solution), a common solution used in organ transplantation, increased the hemocompatibility of acellular scaffolds obtained from rat livers.
View Article and Find Full Text PDFFront Pharmacol
November 2021
Radiation-induced liver disease (RILD) remains a major problem resulting from radiotherapy. In this scenario, immunotherapy with granulocyte colony-stimulating factor (G-CSF) arises as an attractive approach that might improve the injured liver. Here, we investigated G-CSF administration's impact before and after liver irradiation exposure using an association of alcohol consumption and local irradiation to induce liver disease model in C57BL/6 mice.
View Article and Find Full Text PDFStudies suggest that the bioactive polyphenolic compound resveratrol (RESV, trans-isomer), found naturally in certain foods such as red grapes and peanuts, may be able to ameliorate liver damage. However, the effects and efficacy of long-term treatment with RESV remain unclear. Here, we used an acetaminophen (APAP; 400 mg/kg/d for 15 days) overdose model to induce liver damage in C56BL/6 mice.
View Article and Find Full Text PDFInt J Mol Sci
December 2020
There are few existing methods for shortening the decellularization period for a human-sized whole-liver scaffold. Here, we describe a protocol that enables effective decellularization of the liver obtained from pigs weigh 120 ± 4.2 kg within 72 h.
View Article and Find Full Text PDFChagas disease discovered more than a century ago remains an incurable disease. The objective of this work was to investigate the therapeutic potential of cardiomyocytes derived from mouse embryonic stem cells (CM-mESC) in a model of chronic Chagasic cardiomyopathy (CCC). Mouse embryonic stem cells (mESC) were characterized, transduced with luciferase, and submitted to cardiac differentiation.
View Article and Find Full Text PDFStem Cell Res Ther
February 2018
Background: Doxorubicin (Dox) is a chemotherapy drug with limited application due to cardiotoxicity that may progress to heart failure. This study aims to evaluate the role of cardiomyocytes derived from mouse embryonic stem cells (CM-mESCs) in the treatment of Dox-induced cardiomyopathy (DIC) in mice.
Methods: The mouse embryonic stem cell (mESC) line E14TG2A was characterized by karyotype analysis, gene expression using RT-PCR and immunofluorescence.
In this review of cell therapies in Chagas disease, we cover aspects related to the disease, its treatment and world demographics, before proceeding to describe the preclinical and clinical trials performed using cell therapies in the search for an alternative therapy for the most severe and lethal form of this disease, chronic chagasic cardiomyopathy.
View Article and Find Full Text PDFBackground: Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown.
View Article and Find Full Text PDFStem Cells Int
May 2017
This is a pilot clinical study primarily designed to assess the feasibility and safety of X-ray-guided percutaneous intraspinal injection of allogeneic canine adipose tissue-derived mesenchymal stem cells in dogs with chronic spinal cord injury. Six dogs with chronic paraplegia (≥six months) were intraparenchymally injected with allogeneic cells in the site of lesion. Cells were obtained from subcutaneous adipose tissue of a healthy dog, cultured to passage 3, labeled with Technetium, and transplanted into the lesion by percutaneous X-ray-guided injection.
View Article and Find Full Text PDFThe aim of the present study was to investigate whether feeder layers composed of human hair follicle-derived mesenchymal stem cells (hHFDCs) are able to support human embryonic stem cells (hESCs). hHFDCs and mouse embryonic fibroblasts (MEFs) were isolated and cultured in Dulbecco's modified Eagle's medium (DMEM)/F-12 and low-glucose DMEM, respectively. hHFDCs were passaged three times and subsequently characterized.
View Article and Find Full Text PDFPurpose: This study aimed to investigate radiation-induced lesions on the skin in an experimental animal model. Cutaneous wounds were induced in Wistar rats by 4 MeV energy electron beam irradiation, using a dose rate of 240 cGy/min, for 3 different doses (10 Gy, 40 Gy, and 60 Gy). The skin was observed 5, 10, and 25 days (D) after ionizing radiation exposition.
View Article and Find Full Text PDFIntroduction: The increasing interest in 99m-technetium ((99m)Tc)-labeled stem cells encouraged us to study the (99m)Tc binding sites in stem cell compartments.
Methods: Bone marrow mononuclear cells were collected from femurs and tibia of rats. Cells were labeled with (99m)Tc by a direct method, in which reduced molecules react with (99m)Tc with the use of chelating agents, and lysed carefully in an ultrasonic apparatus.
Cell Transplant
March 2016
Mononuclear stem cells have been studied for their potential in myocardial ischemia. In our previous published article, ReACT(®) phase I/II clinical trial, our results suggest that a certain cell population, promonocytes, directly correlated with the perceived angiogenesis in refractory angina patients. This study is ReACT's clinical update, assessing long-term sustained efficacy.
View Article and Find Full Text PDFAim: To overcome current limitations of therapy for liver diseases, cell-based therapies using mesenchymal stem cells (MSC) have been attempted through basic and clinical approaches. Oxidative stress is a crucial factor in hepatology, and reactive oxygen species (ROS) are well-established molecules responsible for its deleterious effects. The antioxidant properties of MSC were recently demonstrated, and therefore we examined the antioxidant activity of canine MSC (cMSC), their effects on isolated hepatocytes in vitro and their curative potential against thioacetamide (TAA)-induced liver injury in vivo.
View Article and Find Full Text PDF