Publications by authors named "Regina B Oakley"

Background: Coxiella burnetii, the causative agent of Q fever, and Rift Valley fever virus are two under-researched zoonotic pathogens in Ethiopia. Potential outbreaks of these diseases, in light of the high dependency of nomadic pastoralists on their livestock, poses a risk to both human and animal health in addition to risking the pastoralists livelihoods. Our study aimed to determine the seroprevalence and associated risk factors for Q fever and Rift Valley fever in pastoral communities in the Afar region of north-eastern Ethiopia.

View Article and Find Full Text PDF

Preterm birth is associated with abnormal lung architecture, and a reduction in pulmonary function related to the degree of prematurity. A thorough understanding of the impact of gestational age on lung microarchitecture requires reproducible quantitative analysis of lung structure abnormalities. The objectives of this study were (1) to use quantitative histological software (ImageJ) to map morphological patterns of injury resulting from delivery of an identical ventilation strategy to the lung at varying gestational ages and (2) to identify associations between gestational age-specific morphological alterations and key functional outcomes.

View Article and Find Full Text PDF

The development of regional lung injury in the preterm lung is not well understood. This study aimed to characterize time-dependent and regionally specific injury patterns associated with early ventilation of the preterm lung using a mass spectrometry-based proteomic approach. Preterm lambs delivered at 124-127 days gestation received 15 or 90 minutes of mechanical ventilation (positive end-expiratory pressure = 8 cm HO, Vt = 6-8 ml/kg) and were compared with unventilated control lambs.

View Article and Find Full Text PDF

High frequency oscillatory ventilation (HFOV) is considered a lung protective ventilation mode in preterm infants only if lung volume is optimized. However, whilst a "high lung volume strategy" is advocated for HFOV in preterm infants this strategy is not precisely defined. It is not known to what extent lung recruitment should be pursued to provide lung protection.

View Article and Find Full Text PDF

The preterm lung is particularly vulnerable to ventilator-induced lung injury (VILI) as a result of mechanical ventilation. However the developmental and pathological cellular mechanisms influencing the changing patterns of VILI have not been comprehensively delineated, preventing the advancement of targeted lung protective therapies. This study aimed to use SWATH-MS to comprehensively map the plasma proteome alterations associated with the initiation of VILI following 60 minutes of standardized mechanical ventilation from birth in three distinctly different developmental lung states; the extremely preterm, preterm and term lung using the ventilated lamb model.

View Article and Find Full Text PDF