The unclear mechanisms of ethanol metabolism in the brain highlight the need for a deeper understanding of its metabolic pathways. This study used in vivo microdialysis to simultaneously sample ethanol and its metabolites, acetaldehyde and acetate, in the rat striatum following self-administration of ethanol, emphasizing the natural oral exposure route. To enhance the self-administration, rats underwent two-bottle-choice and limited access training.
View Article and Find Full Text PDFBackground: The transition from childhood to adulthood, or adolescence, a developmental stage, is characterized by psychosocial and biological changes. The nucleus accumbens (NAc), a striatal brain region composed of the core (NAcC) and shell (NAcSh), has been linked to risk-taking behavior and implicated in reward seeking and evaluation. Most neurons in the NAc are medium spiny neurons (MSNs) that express dopamine D1 receptors (D1R +) and/or dopamine D2 receptors (D2R +).
View Article and Find Full Text PDFBackground: Adolescence, a developmental stage, is characterized by psychosocial and biological changes. The nucleus accumbens (NAc), a striatal brain region composed of the core (NAcC) and shell (NAcSh), has been linked to risk-taking behavior and implicated in reward seeking and evaluation. Most neurons in the NAc are medium spiny neurons (MSNs) that express dopamine D1 receptors (D1R+) and/or dopamine D2 receptors (D2R+).
View Article and Find Full Text PDFTreatment options for alcohol use disorders (AUDs) have minimally advanced since 2004, while the annual deaths and economic toll have increased alarmingly. Phosphodiesterase type 4 (PDE4) is associated with alcohol and nicotine dependence. PDE4 inhibitors were identified as a potential AUD treatment using a bioinformatics approach.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are important players in normal biological function and disease pathogenesis. Of the many biomolecules packaged into EVs, coding and noncoding RNA transcripts are of particular interest for their ability to significantly alter cellular and molecular processes. Here we investigate how chronic ethanol exposure impacts EV RNA cargo and the functional outcomes of these changes.
View Article and Find Full Text PDFA growing number of studies implicate alterations in glutamatergic signaling within the reward circuitry of the brain during alcohol abuse and dependence. A key integrator of glutamatergic signaling in the reward circuit is the nucleus accumbens, more specifically, the dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) within this region, which have been implicated in the formation of dependence to many drugs of abuse including alcohol. D1-MSNs receive glutamatergic input from several brain regions; however, it is not currently known how individual inputs onto D1-MSNs are altered by alcohol experience.
View Article and Find Full Text PDFThe agranular insular cortex (AIC) has recently been investigated by the alcohol field because of its connectivity to and modulatory control over limbic and brainstem regions implicated in alcohol use disorder (AUD), and because it has shown involvement in animal models of alcohol drinking. Despite evidence of AIC involvement in AUD, there has not yet been an examination of whether ethanol modulates glutamatergic and γ-amino-butyric acid (GABA)ergic synaptic transmission and plasticity in the AIC. Characterizing how the synaptic transmission and plasticity states of AIC cortical processing neurons are modulated by acute ethanol will likely reveal the molecular targets by which chronic ethanol alters AIC function as alcohol drinking transitions from controlled to problematic.
View Article and Find Full Text PDFHandb Exp Pharmacol
June 2019
Ionotropic glutamate receptors (AMPA, NMDA, and kainate receptors) play a central role in excitatory glutamatergic signaling throughout the brain. As a result, functional changes, especially long-lasting forms of plasticity, have the potential to profoundly alter neuronal function and the expression of adaptive and pathological behaviors. Thus, alcohol-related adaptations in ionotropic glutamate receptors are of great interest, since they could promote excessive alcohol consumption, even after long-term abstinence.
View Article and Find Full Text PDFAnaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase recently implicated in biochemical, physiological, and behavioral responses to ethanol. Thus, manipulation of ALK signaling may represent a novel approach to treating alcohol use disorder (AUD). Ethanol induces adaptations in glutamatergic synapses onto nucleus accumbens shell (NAcSh) medium spiny neurons (MSNs), and putative targets for treating AUD may be validated for further development by assessing how their manipulation modulates accumbal glutamatergic synaptic transmission and plasticity.
View Article and Find Full Text PDFThe ability to use environmental cues to predict rewarding events is essential to survival. The basolateral amygdala (BLA) plays a central role in such forms of associative learning. Aberrant cue-reward learning is thought to underlie many psychopathologies, including addiction, so understanding the underlying molecular mechanisms can inform strategies for intervention.
View Article and Find Full Text PDFWe previously reported that, in male, Long Evans rats, instrumental lever pressing that had been reinforced during limited training under a variable interval (VI) schedule by oral self-administration of a 10% sucrose/10% ethanol (10S10E) solution was insensitive to devaluation of 10S10E. In contrast, lever pressing that had been reinforced under a variable ratio (VR) schedule, or by self-administration of 10% sucrose (10S) alone, was sensitive to outcome devaluation. The relative insensitivity to outcome devaluation indicated that seeking of 10S10E by the VI-trained rats had become an instrumental habit.
View Article and Find Full Text PDFRationale: Naltrexone, a non-selective opioid antagonist, decreases the euphoria and positive subjective responses to alcohol in heavy drinkers. It has been proposed that the μ-opioid receptor plays a role in ethanol reinforcement through modulation of ethanol-stimulated mesolimbic dopamine release.
Objectives: To investigate the ability of naltrexone and β-funaltrexamine, an irreversible μ-opioid specific antagonist, to inhibit ethanol-stimulated and morphine-stimulated mesolimbic dopamine release, and to determine whether opioid receptors on mesolimbic neurons contribute to these mechanisms.
Operant self-administration methods are commonly used to study the behavioral and pharmacological effects of many drugs of abuse, including ethanol. However, ethanol is typically self-administered orally, rather than intravenously like many other drugs of abuse. The pharmacokinetics of orally administered drugs are more complex than intravenously administered drugs.
View Article and Find Full Text PDFBackground: Two parallel and interacting processes are said to underlie animal behavior, whereby learning and performance of a behavior is at first via conscious and deliberate (goal-directed) processes, but after initial acquisition, the behavior can become automatic and stimulus-elicited (habitual). With respect to instrumental behaviors, animal learning studies suggest that the duration of training and the action-outcome contingency are two factors involved in the emergence of habitual seeking of "natural" reinforcers (e.g.
View Article and Find Full Text PDFBackground: Alcoholics report persistent alcohol craving that is heightened by cognitive cues, stressful situations, and abstinence. The role of endogenous cannabinoids in human alcohol craving--though long suspected--remains elusive.
Materials And Methods: We employed laboratory exposure to stress, alcohol cue, and neutral relaxed situations through guided imagery procedures to evoke alcohol desire and craving in healthy social drinkers (n = 11) and in treatment-engaged, recently abstinent alcoholic subjects (n = 12) and assessed alcohol craving, heart rate, and changes in circulating endocannabinoid levels.
Background: CB(1) cannabinoid receptors in the brain are known to participate in the regulation of reward-based behaviors. However, the contribution of each of the endocannabinoid transmitters, anandamide and 2-arachidonoylglycerol (2-AG), to these behaviors remains undefined. To address this question, we assessed the effects of URB597, a selective anandamide deactivation inhibitor, as a reinforcer of drug-seeking and drug-taking behavior in squirrel monkeys.
View Article and Find Full Text PDFThe endocannabinoid system modulates neurotransmission at inhibitory and excitatory synapses in brain regions relevant to the regulation of pain, emotion, motivation, and cognition. This signaling system is engaged by the active component of cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), which exerts its pharmacological effects by activation of G protein-coupled type-1 (CB1) and type-2 (CB2) cannabinoid receptors. During frequent cannabis use a series of poorly understood neuroplastic changes occur, which lead to the development of dependence.
View Article and Find Full Text PDFPharmacol Res
November 2007
Cannabinoids are well known modulators of mood and emotional behavior. Current research supports a role for endocannabinoid signaling in the treatment of depression. Changes in levels of the cannabinoid CB(1) receptor or the endogenous CB(1) receptor ligands, anandamide and 2-AG, are observed both in humans suffering from depression and in animal models of depression, and experimental manipulation of CB(1) receptor signaling has also been shown to affect emotional reactivity in rodents.
View Article and Find Full Text PDFBackground: The endocannabinoid anandamide may be involved in the regulation of emotional reactivity. In particular, it has been shown that pharmacological inhibition of the enzyme fatty acid amide hydrolase (FAAH), which catalyzes the intracellular hydrolysis of anandamide, elicits anxiolytic-like and antidepressant-like effects in rodents.
Methods: We investigated the impact of chronic treatment with the selective FAAH inhibitor, URB597 (also termed KDS-4103), on the outcomes of the chronic mild stress (CMS) in rats, a behavioral model with high isomorphism to human depression.
Neuropsychopharmacology
December 2006
The endocannabinoids anandamide and 2-arachidonoyglycerol (2-AG) may contribute to the regulation of mood and emotion. In this study, we investigated the impact of the endocannabinoid transport inhibitor AM404 on three rat models of anxiety: elevated plus maze, defensive withdrawal and separation-induced ultrasonic vocalizations. AM404 (1-5 mg kg(-1), intraperitoneal (i.
View Article and Find Full Text PDF