Publications by authors named "Regier T"

Article Synopsis
  • - The study explores how oxygen vacancy structures in perovskite oxides impact their catalytic properties, focusing on different shapes of LaCoO thin films (tetrahedral, pyramidal, and octahedral) as models.
  • - Reactivity orders in oxygen-deficient perovskites for CO oxidation show that tetrahedral CoO sites are the most reactive, followed by octahedral and pyramidal configurations.
  • - Advanced techniques like X-ray spectroscopy and density functional theory reveal that specific defect structures significantly enhance gas adsorption and activation, boosting catalytic reaction rates by over 23 times.
View Article and Find Full Text PDF
Article Synopsis
  • - Cu nanoparticles (NPs) are important for various applications, but traditional methods of making them often lead to problems like surface passivation and clumping, which hurt their performance.
  • - The study introduces a new method of embedding Cu NPs on a specific support that improves their stability and function by enhancing interactions with the support and preventing typical issues like oxidation and agglomeration.
  • - It finds that these modified Cu NPs react differently with carbon monoxide (CO) than standard Cu NPs, thanks to a unique electronic structure that allows for a more efficient reaction mechanism.
View Article and Find Full Text PDF

Distinctive aspects of a culture are often reflected in the meaning and usage of words in the language spoken by bearers of that culture. Keywords such as душа (soul) in Russian, hati (heart) in Indonesian and Malay, and gezellig (convivial/cosy/fun) in Dutch are held to be especially culturally revealing, and scholars have identified a number of such keywords using careful linguistic analyses (Peeters, 2020b; Wierzbicka, 1990). Because keywords are expected to have different statistical properties than related words in other languages, we argue that a quantitative comparison of word usage across languages can help to identify cultural keywords.

View Article and Find Full Text PDF

Sorption of organic molecules on mineral surfaces can occur through several binding mechanisms of varying strength. Here, we investigated the importance of inner-sphere P-O-Fe bonds in synthetic and natural mineral-organic associations. Natural organic matter such as water extracted soil organic matter (WESOM) and extracellular polymeric substances (EPS) from liquid bacterial cultures were adsorbed to goethite and examined by FTIR spectroscopy and P K-edge NEXAFS spectroscopy.

View Article and Find Full Text PDF

The mono-dispersed cubic siegenite CuNi S ultra-fine (≈5 nm) nanocrystals are fabricated through crystallization engineering under hot injection. The strong hydroxylation on mostly exposed CuNi S (220) surface leads to the formation of multi-valence (Cu , Cu , Ni , Ni ) species with unsaturated hybridization and coordination micro-environments, which can induce rich redox reactions to optimize interfacial kinetics for the adsorbed reaction intermediates. The as-synthesized CuNi S nanocrystals with ultra-small particle size and the characteristics of being highly dispersed can increase specific surface area and hydroxylated active sites, which considerably contribute to the improvement of photocatalytic activities.

View Article and Find Full Text PDF

Arctic soils are marked by cryoturbic features, which impact soil-atmosphere methane (CH ) dynamics vital to global climate regulation. Cryoturbic diapirism alters C/N chemistry within frost boils by introducing soluble organic carbon and nutrients, potentially influencing microbial CH oxidation. CH oxidation in soils, however, requires a spatio-temporal convergence of ecological factors to occur.

View Article and Find Full Text PDF

The electroreduction reaction of CO (ECORR) requires high-performance catalysts to convert CO into useful chemicals. Transition metal-based atomically dispersed catalysts are promising for the high selectivity and activity in ECORR. This work presents a series of atomically dispersed Co, Fe bimetallic catalysts by carbonizing the Fe-introduced Co-zeolitic-imidazolate-framework (C-Fe-Co-ZIF) for the syngas generation from ECORR.

View Article and Find Full Text PDF

Functionalist accounts of language suggest that forms are paired with meanings in ways that support efficient communication. Previous work on grammatical marking suggests that word forms have lengths that enable efficient production, and work on the semantic typology of the lexicon suggests that word meanings represent efficient partitions of semantic space. Here we establish a theoretical link between these two lines of work and present an information-theoretic analysis that captures how communicative pressures influence both form and meaning.

View Article and Find Full Text PDF

About 91,300 ha of peatlands has been rewetted in western Europe since the mid-1990s. Still, it is unknown how long-term rewetting alters the dissolved organic matter (DOM) concentration, molecular composition, and functional groups. We examined these DOM characteristics in three peatland types subjected to 47- to 231-yr drainage and 18- to 24-yr rewetting to address this knowledge gap.

View Article and Find Full Text PDF

Solid-state C Nuclear Magnetic Resonance (NMR) and synchrotron-based X-ray Absorption Near-Edge Structure (XANES) have applications for determining the relative proportions of organic C functional groups in materials. Spectral data obtained by NMR is typically processed using integration (INTEG) whereas XANES spectral data is typically processed using deconvolution (DECONV). The objective of this study was to examine the impact of spectral data collection and processing on the estimated relative proportions of organic C functional groups in biochars.

View Article and Find Full Text PDF

Languages differ qualitatively in their numeral systems. At one extreme, some languages have a small set of number terms, which denote approximate or inexact numerosities; at the other extreme, many languages have forms for exact numerosities over a very large range, through a recursively defined counting system. Why do numeral systems vary as they do? Here, we use computational analyses to explore the numeral systems of 30 languages that span this spectrum.

View Article and Find Full Text PDF

Vegetation fires are known to have broad geochemical effects on carbon (C) cycles in the Earth system, yet limited information is available for nitrogen (N). In this study, we evaluated how charring organic matter (OM) to pyrogenic OM (PyOM) altered the N molecular structure and affected subsequent C and N mineralization. Nitrogen near-edge X-ray absorption fine structure (NEXAFS) of uncharred OM, PyOM, PyOM toluene extract, and PyOM after toluene extraction were used to predict PyOM-C and -N mineralization potentials.

View Article and Find Full Text PDF

Colour naming across languages has traditionally been held to reflect the structure of colour perception. At the same time, it has often, and increasingly, been suggested that colour naming may be shaped by patterns of communicative need. However, much remains unknown about the factors involved in communicative need, how need interacts with perception, and how this interaction may shape colour naming.

View Article and Find Full Text PDF

Fire-derived organic matter, often referred to as pyrogenic organic matter (PyOM), is present in the Earth's soil, sediment, atmosphere, and water. We investigated interactions of PyOM with ammonia (NH) gas, which makes up much of the Earth's reactive nitrogen (N) pool. Here we show that PyOM's NH retention capacity under ambient conditions can exceed 180 mg N g PyOM-carbon, resulting in a material with a higher N content than any unprocessed plant material and most animal manures.

View Article and Find Full Text PDF

Gibson et al. () argued that color naming is shaped by patterns of communicative need. In support of this claim, they showed that color naming systems across languages support more precise communication about warm colors than cool colors, and that the objects we talk about tend to be warm-colored rather than cool-colored.

View Article and Find Full Text PDF

The formation of reactive manganese (Mn) species is emerging as a key regulator of carbon oxidation rates, and thus CO emissions, in soils and sediments. Many subsurface environments are characterized by steep oxygen gradients, forming oxic-anoxic interfaces that enable rapid redox cycling of Mn. Here, we examined the impact of Mn(II) oxidation along oxic-anoxic interfaces on carbon oxidation in soils using laboratory-based diffusion reactors.

View Article and Find Full Text PDF

Bimetallic nanoparticles with tailored structures constitute a desirable model system for catalysts, as crucial factors such as geometric and electronic effects can be readily controlled by tailoring the structure and alloy bonding of the catalytic site. Here we report a facile colloidal method to prepare a series of platinum-gold (PtAu) nanoparticles with tailored surface structures and particle diameters on the order of 7 nm. Samples with low Pt content, particularly PtAu, exhibited unprecedented electrocatalytic activity for the oxidation of formic acid.

View Article and Find Full Text PDF

We derive a principled information-theoretic account of cross-language semantic variation. Specifically, we argue that languages efficiently compress ideas into words by optimizing the information bottleneck (IB) trade-off between the complexity and accuracy of the lexicon. We test this proposal in the domain of color naming and show that () color-naming systems across languages achieve near-optimal compression; () small changes in a single trade-off parameter account to a large extent for observed cross-language variation; () efficient IB color-naming systems exhibit soft rather than hard category boundaries and often leave large regions of color space inconsistently named, both of which phenomena are found empirically; and () these IB systems evolve through a sequence of structural phase transitions, in a single process that captures key ideas associated with different accounts of color category evolution.

View Article and Find Full Text PDF

The efficiency with which renewable fuels and feedstocks are synthesized from electrical sources is limited at present by the sluggish oxygen evolution reaction (OER) in pH-neutral media. We took the view that generating transition-metal sites with high valence at low applied bias should improve the activity of neutral OER catalysts. Here, using density functional theory, we find that the formation energy of desired Ni sites is systematically modulated by incorporating judicious combinations of Co, Fe and non-metal P.

View Article and Find Full Text PDF

The Sapir-Whorf hypothesis holds that human thought is shaped by language, leading speakers of different languages to think differently. This hypothesis has sparked both enthusiasm and controversy, but despite its prominence it has only occasionally been addressed in computational terms. Recent developments support a view of the Sapir-Whorf hypothesis in terms of probabilistic inference.

View Article and Find Full Text PDF

The spatial relation of support has been regarded as universally privileged in nonlinguistic cognition and immune to the influence of language. English, but not Korean, obligatorily distinguishes support from nonsupport via basic spatial terms. Despite this linguistic difference, previous research suggests that English and Korean speakers show comparable nonlinguistic sensitivity to the support/nonsupport distinction.

View Article and Find Full Text PDF

Previous research has proposed an adaptive cue combination view of the development of human spatial reorientation (Newcombe & Huttenlocher, 2006), whereby information from multiple sources is combined in a weighted fashion in localizing a target, as opposed to being modular and encapsulated (Hermer & Spelke, 1996). However, no prior work has formalized this proposal and tested it against existing empirical data. We propose a computational model of human spatial reorientation that is motivated by probabilistic approaches to optimal perceptual cue integration (e.

View Article and Find Full Text PDF

Many studies have been conducted on the environmental impacts of combustion generated aerosols. Due to their complex composition and morphology, their chemical reactivity is not well understood and new developments of analysis methods are needed. We report the first demonstration of in-flight X-ray based characterizations of freshly emitted soot particles, which is of paramount importance for understanding the role of one of the main anthropogenic particulate contributors to global climate change.

View Article and Find Full Text PDF