Publications by authors named "Reg Bauld"

Photothermal deflection (PTD) has been frequently utilized to measure the thermal properties of thin solid films on a substrate. In the models commonly used to interpret PTD data, the substrate is assumed to be an ideal thermal insulator. This assumption poses important restrictions on the reliability of these thermal measurements and limits the possibility to use PTD for also measuring the specific heat of the samples.

View Article and Find Full Text PDF

We report for the first time the fabrication of nanocomposite hole-blocking layers consisting of poly-3,4-ethylene-dioxythiophene:poly-styrene-sulfonate (PEDOT:PSS) thin films incorporating networks of gold nanoparticles assembled from Au144(SCH2CH2Ph)60, a molecular gold precursor. These thin films can be prepared reproducibly on indium tin oxide by spinning on it Au144(SCH2CH2Ph)60 solutions in chlorobenzene, annealing the resulting thin film at 400 °C, and subsequently spinning PEDOT:PSS on top. The use of our nanocomposite hole-blocking layers for enhancing the photoconversion efficiency of bulk heterojunction organic solar cells is demonstrated.

View Article and Find Full Text PDF

We demonstrate a facile and cost effective method to obtain gold nanoparticles on graphene by dispersing Au₁₄₄ molecular nanoclusters by spin coating them in thin layers on graphene-based films and subsequent annealing in a controlled atmosphere. The graphene-based thin films used for these experiments are prepared by solvent-assisted exfoliation of graphite in water in the presence of ribonucleic acid as a surfactant and by subsequent vacuum filtration of the resulting graphene-containing suspensions. Not only is this method easily reproducible, but it leads to gold nanoparticles that are not dependent in size on the number of graphene layers beneath them.

View Article and Find Full Text PDF

Ribonucleic acid (RNA) is proposed as a nonionic surfactant for the efficient exfoliation of graphite in thin flakes of few-layer graphene and the subsequent preparation of transparent and conducting thin films. Parameters such as the type of RNA used and the size of starting graphite flakes are demonstrated to be essential for obtaining RNA-graphene thin films of good quality. A model explaining the exfoliation of graphene by RNA in water is suggested.

View Article and Find Full Text PDF