The risk of inducing hypoglycaemia (low blood glucose) constitutes the main challenge associated with insulin therapy for diabetes. Insulin doses must be adjusted to ensure that blood glucose values are within the normal range, but matching insulin doses to fluctuating glucose levels is difficult because even a slightly higher insulin dose than needed can lead to a hypoglycaemic incidence, which can be anything from uncomfortable to life-threatening. It has therefore been a long-standing goal to engineer a glucose-sensitive insulin that can auto-adjust its bioactivity in a reversible manner according to ambient glucose levels to ultimately achieve better glycaemic control while lowering the risk of hypoglycaemia.
View Article and Find Full Text PDFAn inter-drug approach, applying pharmacokinetic information for insulin analogs in different animal species, rat, dog and pig, performed better compared to allometric scaling for human translation of intra-venous half-life and only required data from a single animal species for reliable predictions. Average fold error (AFE) between 1.2-1.
View Article and Find Full Text PDFTherapeutic peptides and proteins derived from either endogenous hormones, such as insulin, or de novo design via display technologies occupy a distinct pharmaceutical space in between small molecules and large proteins such as antibodies. Optimizing the pharmacokinetic (PK) profile of drug candidates is of high importance when it comes to prioritizing lead candidates, and machine-learning models can provide a relevant tool to accelerate the drug design process. Predicting PK parameters of proteins remains difficult due to the complex factors that influence PK properties; furthermore, the data sets are small compared to the variety of compounds in the protein space.
View Article and Find Full Text PDFTransl Res
January 2022
Prediction of human pharmacokinetics (PK) from data obtained in animal studies is essential in drug development. Here, we present a thorough examination of how to achieve good pharmacokinetic data from the pig model for translational purposes by using single-species allometric scaling for selected therapeutic proteins: liraglutide, insulin aspart and insulin detemir. The predictions were based on non-compartmental analysis of intravenous and subcutaneous PK data obtained from two injection regions (neck, thigh) in two pig breeds, domestic pig and Göttingen Minipig, that were compared with PK parameters reported in humans.
View Article and Find Full Text PDFHere, we describe the molecular engineering of insulin icodec to achieve a plasma half-life of 196 h in humans, suitable for once-weekly subcutaneously administration. Insulin icodec is based on re-engineering of the ultra-long oral basal insulin OI338 with a plasma half-life of 70 h in humans. This systematic re-engineering was accomplished by (1) further increasing the albumin binding by changing the fatty diacid from a 1,18-octadecanedioic acid (C18) to a 1,20-icosanedioic acid (C20) and (2) further reducing the insulin receptor affinity by the B16Tyr → His substitution.
View Article and Find Full Text PDFIn humans, food intake and glucose infusion have been reported to increase subcutaneous blood flow. Since local blood flow influences the rate of insulin absorption from the subcutaneous tissue, we hypothesised that an increase in blood glucose levels-occurring as the result of glucose infusion or food intake-could modulate the pharmacokinetic properties of subcutaneously administered insulin. The pharmacokinetic profile of insulin aspart was assessed in 29 domestic pigs that were examined in a fed and fasted state or included in hyperinsulinaemic clamp studies of 4 vs.
View Article and Find Full Text PDFRecently, the first basal oral insulin (OI338) was shown to provide similar treatment outcomes to insulin glargine in a phase 2a clinical trial. Here, we report the engineering of a novel class of basal oral insulin analogues of which OI338, , in this publication, was successfully tested in the phase 2a clinical trial. We found that the introduction of two insulin substitutions, A14E and B25H, was needed to provide increased stability toward proteolysis.
View Article and Find Full Text PDFRecently, the clinical proof of concept for the first ultra-long oral insulin was reported, showing efficacy and safety similar to subcutaneously administered insulin glargine. Here, we report the molecular engineering as well as biological and pharmacological properties of these insulin analogues. Molecules were designed to have ultra-long pharmacokinetic profile to minimize variability in plasma exposure.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
October 2020
The domestic pig is commonly used as animal model in the pharmaceutical development of new therapeutics for treatment of diabetes. Since a formal definition of hypoglycaemia only exists in humans, the purpose of this study was to assess the counterregulatory response in the domestic pig at glucose levels known to induce symptoms of hypoglycaemia in humans. Six pigs were included in hyperinsulinaemic glucose clamps with plasma glucose targets of 2, 3 and 5 mmol/L in a cross-over design, and the associated glucose counterregulatory response was assessed by measuring glucose kinetics and levels of glucagon, c-peptide, catecholamines, cortisol and growth hormone.
View Article and Find Full Text PDFObjective: Obesity is associated with delayed insulin absorption upon subcutaneous (s.c.) dosing in humans.
View Article and Find Full Text PDFPurpose: Fast-acting insulin aspart (faster aspart) is a novel formulation of insulin aspart containing two additional excipients: niacinamide, to increase early absorption, and L-arginine, to optimize stability. The aim of this study was to evaluate the impact of niacinamide on insulin aspart absorption and to investigate the mechanism of action underlying the accelerated absorption.
Methods: The impact of niacinamide was assessed in pharmacokinetic analyses in pigs and humans, small angle X-ray scattering experiments, trans-endothelial transport assays, vascular tension measurements, and subcutaneous blood flow imaging.
Variability in the effect of subcutaneously administered insulin represents a major challenge in insulin therapy where precise dosing is required in order to achieve targeted glucose levels. Since this variability is largely influenced by the absorption of insulin, a deeper understanding of the factors affecting the absorption of insulin from the subcutaneous tissue is necessary in order to improve glycaemic control and the long-term prognosis in people with diabetes. These factors can be related to either the insulin preparation, the injection site/patient, or the injection technique.
View Article and Find Full Text PDFBackground: In humans, subcutaneous administration of insulin in the abdominal region or arm is associated with a faster absorption compared to the thigh or buttocks. We hypothesised that this is partly caused by differences in injection depot structure and kinetics and that the variability in insulin exposure differs between injection sites.
Material And Methods: Regional effects on insulin pharmacokinetics were evaluated in a series of studies in Sprague Dawley rats dosed subcutaneously with insulin aspart in the neck or flank.
The spatial distribution of a soluble insulin formulation was visualized and quantified in 3-dimensions using X-ray computed tomography. The drug distribution was visualized for ex vivo injections in pig subcutaneous tissue. Pig subcutaneous tissue has very distinct layers, which could be separated in the tomographic reconstructions and the amount of drug in each tissue class was quantified.
View Article and Find Full Text PDFStructural traits of permeation enhancers are important determinants of their capacity to promote enhanced drug absorption. Therefore, in order to obtain a better understanding of structure-activity relationships for permeation enhancers, a Quantitative Structural Activity Relationship (QSAR) model has been developed. The random forest-QSAR model was based upon Caco-2 data for 41 surfactant-like permeation enhancers from Whitehead et al.
View Article and Find Full Text PDFHormone-sensitive lipase (HSL) is an intracellular enzyme that has a central role in the regulation of fatty acid metabolism. The enzyme, therefore, is a potentially interesting pharmacological target for the treatment of insulin resistance and dyslipidemic disorders. Based on a high throughput screening, a carbamate based HSL inhibitor was identified and optimized into the selective HSL inhibitors 4-hydroxymethyl-piperidine-1-carboxylic acid 4-(5-trifluoromethylpyridin-2-yloxy)-phenyl ester (13f) and 4-hydroxy-piperidine-1-carboxylic acid 4-(5-trifluoromethylpyridin-2-yloxy)-phenyl ester (13g), with IC50 values of 110 and 500 nM, respectively.
View Article and Find Full Text PDFInhibition of cytochrome P450 (CYP) enzymes is unwanted because of the risk of severe side effects due to drug-drug interactions. We present two in silico Gaussian kernel weighted k-nearest neighbor models based on extended connectivity fingerprints that classify CYP2D6 and CYP3A4 inhibition. Data used for modeling consisted of diverse sets of 1153 and 1382 drug candidates tested for CYP2D6 and CYP3A4 inhibition in human liver microsomes.
View Article and Find Full Text PDFObjective: The purpose of the present study was to examine the metabolic effects of a specific histamine H(3) receptor antagonist, the cinnamic amide NNC 0038-0000-1202 (NNC 38-1202).
Research Methods And Procedures: Effects of NNC 38-1202 on paraventricular levels of histamine and acute effects on food intake were followed in normal rats, whereas effects on body weight homeostasis and lipid metabolism were studied in a rat model of diet-induced obesity (DIO).
Results: NNC 38-1202, administered as single oral doses of 15 and 30 mg/kg, significantly (p < 0.
Oxidation of bovine serum albumin (BSA) was investigated using different oxidants: The water-soluble azo-initiator 2,2'azo-bis-(2-amidinopropane) hydrochloride (AAPH), a combination of FeCl(3) and ascorbate or the Fenton oxidant consisting of FeCl(2), H(2)O(2) and EDTA. In addition, the effects of exogenous compounds such as tert-butyl hydroperoxide (tBuOOH) or solvents such as tetrahydrofuran (THF), often used in model systems, was evaluated. The extent of protein damage was studied by measuring protein carbonyl groups and protein hydroperoxides.
View Article and Find Full Text PDFObjective: This study was conducted to elucidate whether antagonistic targeting of the histamine H3 receptor increases hypothalamic histamine levels, in parallel with decreases in food intake and body weight.
Methods: The competitive antagonist potency of a recently synthesized histamine H3 receptor antagonist, NNC 38-1049, was studied in intact HEK293 cells expressing human or rat histamine H3 receptor, in which NNC 38-1049 was allowed to antagonize the effect of the H3 receptor agonist R-alpha-methylhistamine on isoprenaline-induced accumulation of cAMP. The affinity of NNC 38-1049 for a number of variants of the histamine receptor was also determined.
Protection against protein oxidation by lipophilic and hydrophilic antioxidants in model systems using bovine serum albumin (BSA) in solution alone, or in an emulsion with linolenic acid methyl ester (LnMe) was found to be strongly dependent on the oxidation initiator. Tocopherol, Trolox, or the carotenoids astaxanthin and canthaxanthin were incubated with BSA or BSA/LnMe and oxidation was initiated either with the water-soluble azo-initiator 2,2' azo-bis-(2-amidinopropane) hydrochloride (AAPH), or FeCl3 and ascorbate, or the Fenton system using FeCl2/EDTA/H2O2, or with the singlet oxygen generating species anthracene-9,10-dipropionic acid disodium 1,4 endoperoxide (NDPO2). The results show that all the antioxidants tested were inefficient in the system with FeCl3/ascorbate.
View Article and Find Full Text PDFA data set consisting of 712 compounds was used for classification into two classes with respect to membrane permeation in a cell-based assay: (0) apparent permeability (P(app)) below 4 x 10(-6) cm/s and (1) P(app) on 4 x 10(-6) cm/s or higher. Nine molecular descriptors were calculated for each compound and Nearest-Neighbor classification was applied using five neighbors as optimized by full cross-validation. A model based on five descriptors, number of flex bonds, number of hydrogen bond acceptors and donors, and molecular and polar surface area, was selected by variable selection.
View Article and Find Full Text PDFNew imidazole-free H3 antagonists have been found in a series of cinnamic amides of (S)-(aminomethyl)pyrrolidines. The influence of the substituent on the aromatic moiety on the potency and the inhibition of three cytochrome P450 subtypes are also described.
View Article and Find Full Text PDFAn instrumental on-line retronasal flavor analysis was developed to obtain information about the release of flavor compounds in expired air from humans during eating. The volatile flavor compounds were measured by ion trap mass spectrometry with an atmospheric pressure chemical ionization source (APCI). An interface was designed to sample the breath directly from the nose.
View Article and Find Full Text PDF