Climate change creates favourable conditions for the growth of insect populations. Today, the world is seeing an increase in the number of insect pest infestations associated with a long-term increase in the average temperature of climatic systems. For example, local invasions of Maskell, a citrus pest recognized worldwide, have increased in size and number in recent years.
View Article and Find Full Text PDFSternorrhyncha representatives are serious pests of agriculture and forestry all over the world, primarily causing damage to woody plants. Sternorrhyncha members are vectors for the transfer of a large number of viral diseases, and subsequently, the host plant weakens. Additionally, many are inherent in the release of honeydew, on which fungal diseases develop.
View Article and Find Full Text PDFInsects vastly outnumber us in terms of species and total biomass, and are among the most efficient and voracious consumers of plants on the planet. As a result, to preserve crops, one of the primary tasks in agriculture has always been the need to control and reduce the number of insect pests. The current use of chemical insecticides leads to the accumulation of xenobiotics in ecosystems and a decreased number of species in those ecosystems, including insects.
View Article and Find Full Text PDFHaving observed how botanicals and other natural compounds are used by nature to control pests in the environment, we began investigating natural polymers, DNA and RNA, as promising tools for insect pest management. Over the last decade, unmodified short antisense DNA oligonucleotides have shown a clear potential for use as insecticides. Our research has concentrated mainly on Lymantria dispar larvae using an antisense oligoRING sequence from its inhibitor-of-apoptosis gene.
View Article and Find Full Text PDFAntisense oligonucleotides (ASO), short single-stranded polymers based on DNA or RNA chemistries and synthesized in vitro, regulate gene expression by binding in a sequence-specific manner to an RNA target. The functional activity and selectivity in the action of ASOs largely depends on the combination of nitrogenous bases in a target sequence. This simple and natural property of nucleic acids provides an attractive route by which scientists can create different ASO-based techniques.
View Article and Find Full Text PDF