External coherent fields can drive quantum materials into nonequilibrium states, revealing exotic properties that are unattainable under equilibrium conditions-an approach known as "Floquet engineering." While optical lasers have commonly been used as the driving fields, recent advancements have introduced nontraditional sources, such as coherent phonon drives. Building on this progress, we demonstrate that driving a metallic quantum nanowire with a coherent wave of terahertz phonons can induce an electronic steady state characterized by a persistent quantized current along the wire.
View Article and Find Full Text PDFMaterials exhibiting a significant shift current response could potentially outperform conventional solar cell materials. The myriad of factors governing shift-current response, however, poses significant challenges in finding such strong shift-current materials. Here we propose a general design principle that exploits inter-orbital mixing to excite virtual multiband transitions in materials with multiple flat bands to achieve an enhanced shift current response.
View Article and Find Full Text PDFFloquet moiré materials possess optically-induced flat-electron bands with steady-states sensitive to drive parameters. Within this regime, we show that strong interaction screening and phonon bath coupling can overcome enhanced drive-induced heating. In twisted bilayer graphene (TBG) irradiated by a terahertz-frequency continuous circularly polarized laser, the extremely slow electronic states enable the drive to control the steady state occupation of high-Berry curvature electronic states.
View Article and Find Full Text PDFTwisted bilayer graphene (TBG) exhibits extremely low Fermi velocities for electrons, with the speed of sound surpassing the Fermi velocity. This regime enables the use of TBG for amplifying vibrational waves of the lattice through stimulated emission, following the same principles of operation of free-electron lasers. Our Letter proposes a lasing mechanism relying on the slow-electron bands to produce a coherent beam of acoustic phonons.
View Article and Find Full Text PDFGraphene moiré superlattices show an abundance of correlated insulating, topological, and superconducting phases. Whereas the origins of strong correlations and nontrivial topology can be directly linked to flat bands, the nature of superconductivity remains enigmatic. We demonstrate that magic-angle devices made of twisted tri-, quadri-, and pentalayer graphene placed on monolayer tungsten diselenide exhibit flavor polarization and superconductivity.
View Article and Find Full Text PDFGenuinely non-Hermitian topological phases can be realized in open systems with sufficiently strong gain and loss; in such phases, the Hamiltonian cannot be deformed into a gapped Hermitian Hamiltonian without energy bands touching each other. Comparing Green functions for periodic and open boundary conditions we find that, in general, there is no correspondence between topological invariants computed for periodic boundary conditions, and boundary eigenstates observed for open boundary conditions. Instead, we find that the non-Hermitian winding number in one dimension signals a topological phase transition in the bulk: It implies spatial growth of the bulk Green function.
View Article and Find Full Text PDFIn the presence of electron-phonon coupling, an excitonic insulator harbors two degenerate ground states described by an Ising-type order parameter. Starting from a microscopic Hamiltonian, we derive the equations of motion for the Ising order parameter in the phonon coupled excitonic insulator Ta_{2}NiSe_{5} and show that it can be controllably reversed on ultrashort timescales using appropriate laser pulse sequences. Using a combination of theory and time-resolved optical reflectivity measurements, we report evidence of such order parameter reversal in Ta_{2}NiSe_{5} based on the anomalous behavior of its coherently excited order-parameter-coupled phonons.
View Article and Find Full Text PDFWe theoretically predict and experimentally demonstrate a nonthermal pathway to optically enhance superexchange interaction energies in a material based on exciting ligand-to-metal charge-transfer transitions, which introduces lower-order virtual hopping contributions that are absent in the ground state. We demonstrate this effect in the layered ferromagnetic insulator CrSiTe_{3} by exciting Te-to-Cr charge-transfer transitions using ultrashort laser pulses and detecting coherent phonon oscillations that are impulsively generated by superexchange enhancement via magneto-elastic coupling. This mechanism kicks in below the temperature scale where short-range in-plane spin correlations begin to develop and disappears when the excitation energy is tuned away from the charge-transfer resonance, consistent with our predictions.
View Article and Find Full Text PDFAn elusive goal in the field of driven quantum matter is the induction of long-range order. Here, we propose a mechanism based on light-induced evaporative cooling of holes in a correlated fermionic system. Since the entropy of a filled narrow band grows rapidly with hole doping, the isentropic transfer of holes from a doped Mott insulator to such a band results in a drop of temperature.
View Article and Find Full Text PDFWe propose a systematic way of constructing Floquet second-order topological insulators (SOTIs) based on time-glide symmetry, a nonsymmorphic space-time symmetry that is unique in Floquet systems. In particular, we are able to show that the static enlarged Hamiltonian in the frequency domain acquires reflection symmetry, which is inherited from the time-glide symmetry of the original system. As a consequence, one can construct a variety of time-glide symmetric Floquet SOTIs using the knowledge of static SOTIs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2019
In this work we demonstrate that nonrandom mechanisms that lead to single-particle localization may also lead to many-body localization, even in the absence of disorder. In particular, we consider interacting spins and fermions in the presence of a linear potential. In the noninteracting limit, these models show the well-known Wannier-Stark localization.
View Article and Find Full Text PDFWhen a d-dimensional quantum system is subjected to a periodic drive, it may be treated as a (d+1)-dimensional system, where the extra dimension is a synthetic one. This approach, however, affords only a limited level of control of the effective potential along the synthetic direction. In this work, we introduce a new mean for controlling the Floquet synthetic dimension.
View Article and Find Full Text PDFConventional wisdom suggests that the long time behavior of isolated interacting periodically driven (Floquet) systems is a featureless maximal entropy state characterized by an infinite temperature. Efforts to thwart this uninteresting fixed point include adding sufficient disorder to realize a Floquet many-body localized phase or working in a narrow region of drive frequencies to achieve glassy non-thermal behavior at long time. Here we show that in clean systems the Floquet eigenstates can exhibit non-thermal behavior due to finite system size.
View Article and Find Full Text PDFWe study micromotion in two-dimensional periodically driven systems in which all bulk Floquet eigenstates are localized by disorder. We show that this micromotion gives rise to a quantized time-averaged orbital magnetization density in any region completely filled with fermions. The quantization of magnetization density has a topological origin, and reveals the physical nature of the new phase identified in P.
View Article and Find Full Text PDFMany-body localization (MBL) is a phase of matter that is characterized by the absence of thermalization. Dynamical generation of a large number of local quantum numbers has been identified as one key characteristic of this phase, quite possibly the microscopic mechanism of breakdown of thermalization and the phase transition itself. We formulate a robust algorithm, based on Wegner-Wilson flow (WWF) renormalization, for computing these conserved quantities and their interactions.
View Article and Find Full Text PDFOut-of-equilibrium systems can host phenomena that transcend the usual restrictions of equilibrium systems. Here, we unveil how out-of-equilibrium states, prepared via a quantum quench in a two-band system, can exhibit a nonzero Hall-type current-a remnant Hall response-even when the instantaneous Hamiltonian is time reversal symmetric (in contrast to equilibrium Hall currents). Interestingly, the remnant Hall response arises from the coherent dynamics of the wave function that retain a remnant of its quantum geometry postquench, and can be traced to processes beyond linear response.
View Article and Find Full Text PDFWe investigate the possibility of realizing a disorder-induced topological Floquet spectrum in two-dimensional periodically driven systems. Such a state would be a dynamical realization of the topological Anderson insulator. We establish that a disorder-induced trivial-to-topological transition indeed occurs, and characterize it by computing the disorder averaged Bott index, suitably defined for the time-dependent system.
View Article and Find Full Text PDFWhen parameters are varied periodically, charge can be pumped through a mesoscopic conductor without applied bias. Here, we consider the inverse effect in which a transport current drives a periodic variation of an adiabatic degree of freedom. This provides a general operating principle for adiabatic quantum motors which we discuss here in general terms.
View Article and Find Full Text PDFWe show that a topological phase supporting Majorana fermions can form in a two-dimensional electron gas (2DEG) adjacent to an interdigitated superconductor-ferromagnet structure. An advantage of this setup is that the 2DEG can induce the required Zeeman splitting and superconductivity from a single interface, allowing one to utilize a wide class of 2DEGs including the surface states of bulk InAs. We demonstrate that the interdigitated device supports a robust topological phase when the finger spacing λ is smaller than half of the Fermi wavelength λ(F).
View Article and Find Full Text PDFA junction between two topological superconductors containing a pair of Majorana fermions exhibits a "fractional" Josephson effect, 4π periodic in the superconductors' phase difference. An additional fractional Josephson effect, however, arises when the Majorana fermions are spatially separated by a superconducting barrier. This new term gives rise to a set of Shapiro steps which are essentially absent without Majorana modes and therefore provides a unique signature for these exotic states.
View Article and Find Full Text PDFWe study the low-temperature tunneling density of states of thin wires where superconductivity is destroyed through quantum phase-slip proliferation. Although this regime is believed to behave as an insulator, we show that for a large temperature range this phase is characterized by a conductivity falling off at most linearly with temperature, and has a gapless excitation spectrum. This novel conducting phase results from electron-electron interaction induced pair breaking.
View Article and Find Full Text PDFTunneling of electrons of definite chirality into a quantum wire creates counterpropagating excitations, carrying both charge and energy. We find that the partitioning of energy is qualitatively different from that of charge. The partition ratio of energy depends on the excess energy of the tunneling electrons (controlled by the applied bias) and on the interaction strength within the wire (characterized by the Luttinger-liquid parameter κ), while the partitioning of charge is fully determined by κ.
View Article and Find Full Text PDFRecent experiments on the conductance of thin, narrow superconducting strips have found periodic fluctuations, as a function of the perpendicular magnetic field, with a period corresponding to approximately two flux quanta per strip area [A. Johansson et al., Phys.
View Article and Find Full Text PDFWe introduce a new approach to create and detect Majorana fermions using optically trapped 1D fermionic atoms. In our proposed setup, two internal states of the atoms couple via an optical Raman transition-simultaneously inducing an effective spin-orbit interaction and magnetic field-while a background molecular BEC cloud generates s-wave pairing for the atoms. The resulting cold-atom quantum wire supports Majorana fermions at phase boundaries between topologically trivial and nontrivial regions, as well as "Floquet Majorana fermions" when the system is periodically driven.
View Article and Find Full Text PDF