A solitary functioning kidney (SFK) from birth predisposes to hypertension and kidney dysfunction, and this may be associated with impaired fluid and sodium homeostasis. Brief and early angiotensin-converting enzyme inhibition (ACEi) in a sheep model of SFK delays onset of kidney dysfunction. We hypothesized that modulation of the renin-angiotensin system via brief postnatal ACEi in SFK would reprogram renal sodium and water handling.
View Article and Find Full Text PDFA child with a congenital solitary functioning kidney (SFK) may develop kidney disease from early in life due to hyperfiltration injury. Previously, we showed in a sheep model of SFK that brief angiotensin-converting enzyme inhibition (ACEi) early in life is reno-protective and increases renal functional reserve (RFR) at 8 months of age. Here we investigated the long-term effects of brief early ACEi in SFK sheep out to 20 months of age.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2023
On the one hand, lymphatic dysfunction induces interstitial edema and inflammation. On the other hand, the formation of edema and inflammation induce lymphatic dysfunction. However, informed by the earlier reports of undetected apoptosis of irradiated lymphatic endothelial cells (LECs) in vivo, lymphatic vessels are commonly considered inconsequential to ionizing radiation (IR)-induced inflammatory injury to normal tissues.
View Article and Find Full Text PDFBackground: Children born with a solitary functioning kidney (SFK) are predisposed to develop hypertension and kidney injury. Glomerular hyperfiltration and hypertrophy contribute to the pathophysiology of kidney injury. Angiotensin-converting enzyme inhibition (ACEi) can mitigate hyperfiltration and may be therapeutically beneficial in reducing progression of kidney injury in those with an SFK.
View Article and Find Full Text PDFMajority of patients with hypertension and chronic kidney disease (CKD) undergoing renal denervation (RDN) are maintained on antihypertensive medication. However, RDN may impair compensatory responses to hypotension induced by blood loss. Therefore, continuation of antihypertensive medications in denervated patients may exacerbate hypotensive episodes.
View Article and Find Full Text PDFRenal sympathetic nerves contribute to renal excretory function during volume expansion. We hypothesized that intact renal innervation is required for excretion of a fluid/electrolyte load in hypertensive chronic kidney disease (CKD) and normotensive healthy settings. Blood pressure, kidney hemodynamic and excretory response to 180 min of isotonic saline loading (0.
View Article and Find Full Text PDFAim: The aim of the present study was to investigate the prevalence and etiology of molar-incisor hypomineralization (MIH) in 8- to 16-year-old children from town (Baddi) of Himachal Pradesh.
Materials And Methods: A cross-sectional study was conducted with 2000 children from various schools of Baddi. Molar-incisor hypomineralization was diagnosed on the basis of EAPD 2003 criteria revised in 2009.
Children born with a solitary functioning kidney (SFK) have an increased risk of hypertension and kidney disease from early in adulthood. In response to a reduction in kidney mass, the remaining kidney undergoes compensatory kidney growth. This is associated with both an increase in size of the kidney tubules and the glomeruli and an increase in single nephron glomerular filtration rate (SNGFR).
View Article and Find Full Text PDFMaternal alcohol consumption can impair renal development and program kidney dysfunction in offspring. Given that most women who drink alcohol cease consumption upon pregnancy recognition, we aimed to investigate the effect of alcohol around the time of conception (PC:EtOH) on offspring renal development and function. Rats received a liquid diet ±12.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2019
Catheter-based renal denervation (RDN) was introduced as a treatment for resistant hypertension. There remain critical questions regarding the physiological mechanisms underlying the hypotensive effects of catheter-based RDN. Previous studies indicate that surgical denervation reduces renin and the natriuretic response to saline loading; however, the effects on these variables of catheter-based RDN, which does not yield complete denervation, are largely unknown.
View Article and Find Full Text PDFWe examined whether renal denervation (RDN) reduced blood pressure (BP), improved glomerular filtration rate, albuminuria, and left ventricular mass in sheep with hypertensive chronic kidney disease (CKD). To examine whether renal nerve function returned in the long term, we examined vascular contraction to nerve stimulation in renal arteries and determined nerve regrowth by assessing renal TH (tyrosine hydroxylase), CGRP (calcitonin gene-related peptide), and norepinephrine levels in kidneys at 30 months after RDN. RDN normalized BP in hypertensive CKD sheep such that BP was similar to that of the normotensive sheep with intact nerves.
View Article and Find Full Text PDFKey Points: In the present study, we investigated whether hypoxia during late pregnancy impairs kidney development in mouse offspring, and also whether this has long-lasting consequences affecting kidney function in adulthood. Hypoxia disrupted growth of the kidney, particularly the collecting duct network, in juvenile male offspring. By mid-late adulthood, these mice developed early signs of kidney disease, notably a compromised response to water deprivation.
View Article and Find Full Text PDFBackground: Clinical trials applying catheter-based radiofrequency renal denervation (RDN) demonstrated a favorable safety profile with minimal acute or procedural adverse events. Whether ablation of renal nerves adversely affects compensatory responses to hemodynamic challenge has not been extensively investigated.
Objectives: The aim of this study was to examine the effect of RDN on mean arterial pressure, renal function, and the reflex response to hemorrhage in sheep with normotension (control) or with hypertensive chronic kidney disease (CKD).
Am J Physiol Renal Physiol
November 2016
The kidney continues to mature postnatally, with significant elongation of nephron tubules and collecting ducts to maintain fluid/electrolyte homeostasis. The aim of this project was to develop methodology to estimate lengths of specific segments of nephron tubules and collecting ducts in the CD-1 mouse kidney using a combination of immunohistochemistry and design-based stereology (vertical uniform random sections with cycloid arc test system). Lengths of tubules were determined at postnatal day 21 (P21) and 2 and 12 mo of age and also in mice fed a high-salt diet throughout adulthood.
View Article and Find Full Text PDFEpidemiological evidence links recurrent dehydration associated with periodic water intake with chronic kidney disease (CKD). However, minimal attention has been paid to the long-term impact of periodic water intake on the progression of CKD and underlying mechanisms involved. Therefore we investigated the chronic effects of recurrent dehydration associated with periodic water restriction on arterial pressure and kidney function and morphology in male spontaneously hypertensive rats (SHR).
View Article and Find Full Text PDFDistribution system is the means of revenue for electric utility. It needs to be restored at the earliest if any feeder or complete system is tripped out due to fault or any other cause. Further, uncertainty of the loads, result in variations in the distribution network's parameters.
View Article and Find Full Text PDFPreviously, we demonstrated that renal hemodynamic responses to nitric oxide (NO) inhibition were attenuated in aged, hypertensive sheep born with a solitary functioning kidney (SFK). NO is an important regulator of renal function, particularly, in the postnatal period. We hypothesized that the onset of renal dysfunction and hypertension in individuals with a SFK is associated with NO deficiency early in life.
View Article and Find Full Text PDFShort-term maternal corticosterone (Cort) administration at mid-gestation in the mouse reduces nephron number in both sexes while programming renal and cardiovascular dysfunction in 12-month male but not female offspring. The renal renin-angiotensin-aldosterone system (RAAS), functions in a sexually dimorphic manner to regulate both renal and cardiovascular physiology. This study aimed to identify if there are sex-specific differences in basal levels of the intrarenal RAAS and to determine the impact of maternal Cort exposure on the RAAS in male and female offspring at 6 months of age.
View Article and Find Full Text PDFGestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.
View Article and Find Full Text PDFExposure to excess glucocorticoids programs susceptibility to cardiovascular and renal dysfunction in later life although the mechanisms have not been clearly elucidated. We administered corticosterone (CORT; 33 μg·kg(-1)·h(-1)) to pregnant mice for 60 h from embryonic day (E) 12.5.
View Article and Find Full Text PDF