Mol Cell Biochem
January 2017
Fibroblast growth factors (FGFs) comprise a large family of signaling molecules that involve cell patterning, mobilization, differentiation, and proliferation. Various FGFs, including FGF-1, FGF-2, and FGF-5, have been shown to play a role in cytoprotection during adverse cardiac events; however, whether FGF-8 is a cytoprotective remains unclear. The current study was designed to evaluate the effect of FGF-8 treatment on oxidative stress-induced apoptosis in H9c2 cells.
View Article and Find Full Text PDFInflammation has been implicated as a perpetrator of diabetes and its associated complications. Monocytes, key mediators of inflammation, differentiate into pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages upon infiltration of damaged tissue. However, the inflammatory cell types, which propagate diabetes progression and consequential adverse disorders, remain unclear.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2014
Macrophage polarization is emerging as an important area of research for the development of novel therapeutics to treat inflammatory diseases. Within the current study, the role of Notch1R in macrophage differentiation was investigated as well as downstream effects in THP-1 monocytes cultured in "inflammation mimicry" media. Interference of Notch signaling was achieved using either the pharmaceutical inhibitor DAPT or Notch1R small interfering RNA (siRNA), and Notch1R expression, macrophage phenotypes, and anti- and proinflammatory cytokine expression were evaluated.
View Article and Find Full Text PDFThymosin β4 (Tβ4), a small G-actin sequestering peptide, mediates cell proliferation, migration, and angiogenesis. Whether embryonic stem (ES) cells, overexpressing Tβ4, readily differentiate into cardiac myocytes in vitro and in vivo and enhance cardioprotection following transplantation post myocardial infarction (MI) remains unknown. Accordingly, we established stable mouse ES cell lines, RFP-ESCs and Tβ4-ESCs, expressing RFP and an RFP-Tβ4 fusion protein, respectively.
View Article and Find Full Text PDFCardiac myocyte differentiation reported thus far is from iPS cells generated from mouse and human fibroblasts. However, there is no article on the generation of iPS cells from cardiac ventricular specific cell types such as H9c2 cells. Therefore, whether transduced H9c2 cells, originally isolated from embryonic cardiac ventricular tissue, will be able to generate iPS cells and have the potential to repair and regenerate infarcted myocardium remains completely elusive.
View Article and Find Full Text PDFWe investigated whether factors released from mouse embryonic stem (ES) cells primed with and without transforming growth factor (TGF)-β2 inhibit iodoacetic acid (IAA)- and H(2)O(2)-induced apoptosis in the cell culture system as well as after transplantation in the infarcted heart. We generated conditioned media (CMs) from ES cells primed with and without TGF-β2 and determined their effects on IAA- and H(2)O(2)-induced apoptosis in H9c2 cells. We also transplanted both ES-CMs in the infarcted heart to determine the effects on apoptosis and cardiac function after myocardial infarction (MI) at day (D)1 and D14.
View Article and Find Full Text PDFWe examined whether factors released from embryonic stem (ES) cells inhibit cardiac and vascular cell apoptosis and stimulate endogenous progenitor cells that enhance neovascularization with improved cardiac function. We generated and transplanted ES-conditioned medium (CM) in the infarcted heart to examine effects on cardiac and vascular apoptosis, activation of endogenous c-kit and FLK-1(+ve) cells, and their role in cardiac neovascularization. TUNEL, caspase-3 activity, immunohistochemistry, H&E, and Masson's trichrome stains were used to determine the effect of transplanted ES-CM on cardiac apoptosis and neovascularization.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2008
We recently reported that embryonic stem cells-conditioned medium (ES-CM) contains antiapoptotic factors that inhibit apoptosis in the cardiac myoblast H9c2 cells. However, the mechanisms of inhibited apoptosis remain elusive. In this report, we provide evidence for the novel mechanisms involved in the inhibition of apoptosis provided by ES-CM.
View Article and Find Full Text PDF