Publications by authors named "Reetta Nylund"

In studies reported in the 1960s and since, blood plasma from radiation-exposed individuals has been shown to induce chromosome damage when transferred into lymphocyte cultures of non-irradiated persons. This effect has been described to occur via clastogenic factors, whose nature is still mostly unknown. We have previously examined clastogenic factors from irradiated individuals by looking at plasma-induced DNA damage in reporter cells.

View Article and Find Full Text PDF

Purpose: The European Union's Seventh Framework Programme-funded project 'Multi-disciplinary biodosimetric tools to manage high scale radiological casualties' (MULTIBIODOSE) has developed a multiparametric approach to radiation biodosimetry, with a particular emphasis on triage of large numbers of potentially exposed individuals following accidental exposures. In November 2012, an emergency exercise took place which tested the capabilities of the MULTIBIODOSE project partners. The exercise described here had a dual purpose: Intercomparison of (i) three biodosimetric assays, and (ii) the capabilities of the seven laboratories, with regards to provision of triage status for suspected radiation exposed individuals.

View Article and Find Full Text PDF

High doses of ionising radiation damage the heart by an as yet unknown mechanism. A concern for radiological protection is the recent epidemiological data indicating that doses as low as 100-500 mGy may induce cardiac damage. The aim of this study was to identify potential molecular targets and/or mechanisms involved in the pathogenesis of low-dose radiation-induced cardiovascular disease.

View Article and Find Full Text PDF

Background: Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.

View Article and Find Full Text PDF

Background: Earlier we have shown that the mobile phone radiation (radiofrequency modulated electromagnetic fields; RF-EMF) alters protein expression in human endothelial cell line. This does not mean that similar response will take place in human body exposed to this radiation. Therefore, in this pilot human volunteer study, using proteomics approach, we have examined whether a local exposure of human skin to RF-EMF will cause changes in protein expression in living people.

View Article and Find Full Text PDF

Recent data suggest that there might be a subtle thermal explanation for the apparent induction by radiofrequency (RF) radiation of transgene expression from a small heat-shock protein (hsp16-1) promoter in the nematode, Caenorhabditis elegans. The RF fields used in the C. elegans study were much weaker (SAR 5-40 mW kg(-1)) than those routinely tested in many other published studies (SAR approximately 2 W kg(-1)).

View Article and Find Full Text PDF

We have examined in vitro cell response to mobile phone radiation (900 MHz GSM signal) using two variants of human endothelial cell line: EA.hy926 and EA.hy926v1.

View Article and Find Full Text PDF

Possible biological effects of mobile phone microwaves were investigated in vitro. In this study, which was part of the 5FP EU project REFLEX (Risk Evaluation of Potential Environmental Hazards From Low-Energy Electromagnetic Field Exposure Using Sensitive in vitro Methods), six human cell types, immortalized cell lines and primary cells, were exposed to 900 and 1800 MHz. RNA was isolated from exposed and sham-exposed cells and labeled for transcriptome analysis on whole-genome cDNA arrays.

View Article and Find Full Text PDF

The human endothelial cell line EA.hy926 was exposed to mobile phone radiation and the effect on protein expression was examined using two-dimensional electrophoresis (2-DE). Up to 38 various proteins have statistically significantly altered their expression levels following the irradiation.

View Article and Find Full Text PDF

We argue that the use of high-throughput screening techniques, although expensive and laborious, is justified and necessary in studies that examine biological effects of mobile phone radiation. The "case of hsp27 protein" presented here suggests that even proteins with only modestly altered (by exposure to mobile phone radiation) expression and activity might have an impact on cell physiology. However, this short communication does not attempt to present the full scientific evidence that is far too large to be presented in a single article and that is being prepared for publication in three separate research articles.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhvr80ql1lhndr7lspjlosmobd98mo6q0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once