Objective: We examined in 20-week-old Zucker diabetic fatty (ZDF) rats whether restoration of hepatic glucokinase (GK) expression would alter hepatic glucose flux and improve hyperglycemia.
Research Design And Methods: ZDF rats were treated at various doses with an adenovirus that directs the expression of rat liver GK (AdvCMV-GKL) dose dependently, and various metabolic parameters were compared with those of nondiabetic lean littermates (ZCL rats) before and during a hyperglycemic clamp. Viral infection per se did not affect hepatic GK activity, since expression of a catalytically inactive form of GK did not alter endogenous hepatic GK activity.
Fatty liver is commonly associated with insulin resistance and type 2 diabetes, but it is unclear whether triacylglycerol accumulation or an excess flux of lipid intermediates in the pathway of triacyglycerol synthesis are sufficient to cause insulin resistance in the absence of genetic or diet-induced obesity. To determine whether increased glycerolipid flux can, by itself, cause hepatic insulin resistance, we used an adenoviral construct to overexpress glycerol-sn-3-phosphate acyltransferase-1 (Ad-GPAT1), the committed step in de novo triacylglycerol synthesis. After 5-7 days, food intake, body weight, and fat pad weight did not differ between Ad-GPAT1 and Ad-enhanced green fluorescent protein control rats, but the chow-fed Ad-GPAT1 rats developed fatty liver, hyperlipidemia, and insulin resistance.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
April 2007
Effect of stimulation of glucokinase (GK) export from the nucleus by small amounts of sorbitol on hepatic glucose flux in response to elevated plasma glucose was examined in 6-h fasted Zucker diabetic fatty rats at 10 wk of age. Under basal conditions, plasma glucose, insulin, and glucagon were approximately 8 mM, 2,000 pmol/l, and 60 ng/l, respectively. Endogenous glucose production (EGP) was 44 +/- 4 micromol x kg(-1) x min(-1).
View Article and Find Full Text PDF