Publications by authors named "Reese J"

Infertility and spontaneous pregnancy losses are an enduring problem to women's health. The establishment of pregnancy depends on successful implantation, where a complex series of interactions occurs between the heterogeneous cell types of the uterus and blastocyst. Although a number of genes are implicated in embryo-uterine interactions during implantation, genetic evidence suggests that only a small number of them are critical to this process.

View Article and Find Full Text PDF

O6-alkylguanine DNA alkyltransferase (AGT) is a key mechanism in the prevention against MNU induced malignant transformation by removal of O6 methyl guanine (O6mG) adducts. We asked whether heterozygous p53 deficient mice (p53+/-) would be more susceptible to MNU induced lymphomas than wild type mice, and whether O6mG adducts were responsible for this susceptibility. To determine whether MGMT overexpression would be protective, p53+/- mice were bred to human MGMT transgenic mice (MGMT+) and treated with 50 mg/kg MNU.

View Article and Find Full Text PDF

The action of multi-subunit complexes that are able to overcome the repressive effects of chromatin is an important step in the regulation of eukaryotic gene expression. Identification of complexes that modify the structure of chromatin to help factors access the underlying DNA has enhanced our understanding of how some genes are controlled. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) represent one group of complexes that regulate the level of acetylation on the N-terminal tails of core histone proteins.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to ascertain a strategy for maximizing parental consent for organ donation in traumatically injured children suffering from brain death. Our hypothesis was that appropriate attending surgeon involvement and delay in evaluating children for brain death leads to an increased percentage of organ donors.

Methods: From January 1993 to August 1999, the records of all children who died in a Level I trauma center were evaluated.

View Article and Find Full Text PDF

The DNA damage inducible gene ribonucleotide reductase (RNR3) is regulated by a transcriptional repression mechanism by the recruitment of the Ssn6-Tup1 corepressor complex to its promoter by the sequence-specific DNA-binding protein Crt1. Ssn6-Tup1 is reported to represses transcription by interfering with transcription factors, recruiting histone deacetylases, and positioning nucleosomes at the promoter of its target genes. Two of the three mechanisms involve effects on chromatin structure, and therefore, we have delineated the nucleosomal structure of RNR3 in the repressed and derepressed state using multiple nuclease mapping strategies.

View Article and Find Full Text PDF

Cyclooxygenase (COX)-derived prostaglandins are critical in female reproduction. Gene targeting studies show that ovulation, fertilization, implantation, and decidualization are defective in COX-2 deficient mice. We used genetic and pharmacologic approaches to perturb COX function and examine the differential and synergistic effects of inhibition of COX-1, COX-2, or of both isoforms on reproductive outcomes during early pregnancy in mice.

View Article and Find Full Text PDF

Categories of resistance to greenbug, Schizaphisgraminum (Rondani), biotype I, were determined in goatgrass, Aegilops tauschii (Coss.) Schmal., accession 1675 (resistant donor parent), 'Wichita' wheat, Triticum aestivum L.

View Article and Find Full Text PDF

Myelosuppression is commonly observed after alkylating agent chemotherapy due to low levels of O(6)-alkylguanine DNA alkyltransferase protein (AGT) in hematopoietic progenitors. Mice that lack AGT in all organs, O(6)-methylguanine-DNA methyltransferase gene knockout (MGMT(-/-)) mice are extremely hypersensitive to the methylating agent N-methyl-N-nitrosourea (MNU) and exhibit a 10-fold reduction in the LD(90). To determine whether bone marrow damage was the cause of the increased lethality, we transplanted 1 x 10(6) wild-type marrow into MGMT(-/-) mice and MGMT(-/-) marrow into wild-type mice and observed survival after MNU.

View Article and Find Full Text PDF

The proteasome is well known for its regulation of the cell cycle and degradation of mis-folded proteins, yet many of its functions are still unknown. We show that RPN11, a gene encoding a subunit of the regulatory cap of the proteasome, is required for UV-stimulated activation of Gcn4p target genes, but is dispensable for their activation by the general control pathway. We provide evidence that RPN11 functions downstream of RAS2, and show that mutation of two additional proteasome subunits results in identical phenotypes.

View Article and Find Full Text PDF

Cyclooxygenase (COX)-derived prostaglandins (PGs) regulate numerous maternal-fetal interactions during pregnancy. PGs stimulate uterine contractions and prepare the cervix for parturition, whereas in the fetus, PGs maintain patency of the ductus arteriosus (DA), a vascular shunt that transmits oxygenated placental blood to the fetal systemic circulation. However, the origin and site of action of these PGs remain undefined.

View Article and Find Full Text PDF

The general transcription factor TFIID and its individual subunits (TAF(II)s) have been the focus of many studies, yet their functions in vivo are not well established. Here we characterize the requirement of yeast TAF(II)s for the derepression of the ribonucleotide reductase (RNR) genes. Promoter mapping studies revealed that the upstream repressing sequences, the damage-responsive elements (DREs), rendered these genes dependent upon TAF(II)s.

View Article and Find Full Text PDF

Successful implantation is the result of an intimate 'cross-talk' between the blastocyst and uterus in a temporal and cell-specific manner. Thus, both the uterine and embryonic events must be examined to better understand this process. Although various aspects and molecules associated with these events have been explored, a comprehensive understanding of the implantation process is still very limited.

View Article and Find Full Text PDF

In some avian species, young birds capable of reproducing diminish their prospects of doing so by molting into a subadult plumage that accurately signals their subadult status. Several hypotheses have been proposed to explain the evolution of delayed plumage maturation, but testing them usually has involved interspecific comparisons that are hard to interpret. Mute swans (Cygnus olor) exhibit two phenotypes that differ in whether the birds have a gray subadult plumage (SAP phenotype) or molt immediately into an all white adult plumage (AP phenotype).

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2; Ptgs2) acts as a tumor promoter in rodent models for colorectal cancer, but its precise role in carcinogenesis remains unclear. We evaluated the contribution of host-derived COX-1 and COX-2 in tumor growth using both genetic and pharmacological approaches. Lewis lung carcinoma (LLC) cells grow rapidly as solid tumors when implanted in C57BL/6 mice.

View Article and Find Full Text PDF

PRL and its homologs accomplish their biological effects through the PRL receptor (PRLR). We evaluated the expression and function of PRLR in the embryo and uterus during the periimplantation period because PRLR deficiency results in implantation failure. In wild-type mice, PRLR expression was localized to undecidualized stromal cells in the antimesometrial border on days 6-8 of pregnancy.

View Article and Find Full Text PDF

Human mesenchymal stem cells (hMSC)-nonhematopoietic cells within the bone marrow microenvironment that can be culture expanded to a uniform population of fibroblastic cells-have been shown to support long-term hematopoiesis of CD34+ cells. Because direct contact between stromal elements and CD34+ cells enhances long-term engraftment, we postulated that hMSC would be a good alternative to the more heterogeneous stroma currently used in gene transfer studies. We used hMSC to support retroviral gene transfer of the G156A MGMT (deltaMGMT) gene encoding an alkyltransferase (AGT), which confers drug resistance to a combination of O6-benzylguanine (BG) plus the alkylating agents BCNU and temozolomide (TMZ) in human hematopoietic progenitors.

View Article and Find Full Text PDF

The RNA polymerase II general transcription factor TFIID is a complex containing the TATA-binding protein (TBP) and associated factors (TAFs). We have used a mutant allele of the gene encoding yeast TAF(II)68/61p to analyze its function in vivo. We provide biochemical and genetic evidence that the C-terminal alpha-helix of TAF(II)68/61p is required for its direct interaction with TBP, the stable incorporation of TBP into the TFIID complex, the integrity of the TFIID complex, and the transcription of most genes in vivo.

View Article and Find Full Text PDF

Muromonab-CD3 (OKT3), a murine IgG2a antibody directed against the T3 (CD3) complex on mature lymphocytes, triggers adverse immune reactions. Anaphylactic reactions have occurred in patients exposed to OKT3 and are mediated by anti-OKT3 IgE antibodies. The reactions are not antibody mediated and can occur within seconds of administration of a mast cell secretogogue.

View Article and Find Full Text PDF

Purpose: Emphysematous pyelonephritis in diabetics is considered a potentially lethal infection. Mortality rates of patients treated conservatively approaches 80% in some series. These patients often present with signs of sepsis or septic shock.

View Article and Find Full Text PDF

Background: Intraoperative thromboembolism and the systemic inflammatory reaction are thought to play a role in causing cerebral dysfunction following cardiopulmonary bypass (CPB). Increased levels of S100B, an astroglial protein, have been linked to neuropsychological deficits after CPB. The present study investigated whether S100B release correlates with intraoperative embolus formation, thrombin formation, or the release of inflammatory parameters.

View Article and Find Full Text PDF

Human hematopoietic progenitors express low levels of O6-alkylguanine-DNA alkyltransferase and are sensitive to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), particularly following O6-benzylguanine (BG)-mediated O6-alkylguanine-DNA alkyltransferase inhibition. Expression of the BG-resistant mutant (G156A) methylguanine methyltransferase (deltaMGMT) gene in hematopoietic cells confers resistance to BG and BCNU. Because BCNU targets both early and late human hematopoietic cells and results in prolonged and cumulative myelosuppression, we attempted to protect early hematopoietic progenitors (long-term culture initiating cells (LTC-ICs)) by retroviral-mediated transfer of the deltaMGMTgene.

View Article and Find Full Text PDF

Prostaglandins (PGs) produced by cyclooxygenase (COX) participate in many aspects of female reproduction. The two isoforms of cyclooxygenase, COX-1 and COX-2, have distinct expression patterns in the mouse uterus during the peri-implantation period and suggest their independent contribution to uterine PGs. Using wild type and COX-1(-/-) mice, we examined the role of COX-1-derived PGs on day 4 of pregnancy, when its expression is maximal.

View Article and Find Full Text PDF

O6-Benzylguanine (BG) is a potent inhibitor of the DNA repair protein 06-alkylguanine DNA alkyltransferase (AGT), and sensitizes tumors to BCNU in vitro and in xenografts. The combination of BG and BCNU is now undergoing phase I clinical testing. The maximally tolerated dose of BCNU given after BG is expected to be lower then the doses tolerated as a single agent owing to BG sensitization of hematopoietic progenitors.

View Article and Find Full Text PDF