Publications by authors named "Reepa Saha"

Photobiomodulation (PBM) therapy using red- and near-infrared (NIR) light has shown beneficial regenerative effects on cell functionalities and consequently on health applications. Light parameter values, particularly power density, significantly affect the treatment outcomes. The limited use of light in transcutaneous applications is due to the power attenuation challenge, which restricts the transmission of light energy to deeper tissues.

View Article and Find Full Text PDF

This paper presents a novel resonance-based, adaptable, and flexible inductive wireless power transmission (WPT) link for powering implantable and wearable devices throughout the human body. The proposed design provides a comprehensive solution for wirelessly delivering power, sub-micro to hundreds of milliwatts, to deep-tissue implantable devices (3D space of human body) and surface-level wearable devices (2D surface of human skin) safely and seamlessly. The link comprises a belt-fitted transmitter (Belt-Tx) coil equipped with a power amplifier (PA) and a data demodulator unit, two resonator clusters (to cover upper-body and lower-body), and a receiver (Rx) unit that consists of Rx load and resonator coils, rectifier, microcontroller, and data modulator units for implementing a closed-loop power control (CLPC) mechanism.

View Article and Find Full Text PDF

This article presents a highly scalable and rack-mountable wireless sensing system for long-term monitoring (i.e., sense and estimate) of small animal/s' physical state (SAPS), such as changes in location and posture within standard cages.

View Article and Find Full Text PDF

This paper presents a novel resonance-based multi-coil wireless power transmission (WPT) system for powering implantable devices inside the 3D space of the human body. This design consists of a power amplifier, a transmitter coil, a cluster of resonators in parallel configuration, and a receiver unit, working at 13.56 MHz (the FCC-approved ISM-band).

View Article and Find Full Text PDF