Germline pathogenic TP53 variants predispose individuals to a high lifetime risk of developing multiple cancers and are the hallmark feature of Li-Fraumeni syndrome (LFS). Our group has previously shown that LFS patients harbor shorter plasma cell-free DNA fragmentation; independent of cancer status. To understand the functional underpinning of cfDNA fragmentation in LFS, we conducted a fragmentomic analysis of 199 cfDNA samples from 82 TP53 mutation carriers and 30 healthy TP53-wildtype controls.
View Article and Find Full Text PDFReactive oxygen species (ROS) including the superoxide anion (O) are typically studied in cell cultures using fluorescent dyes, which provide only discrete single-point measurements. These methods lack the capabilities for assessing O kinetics and release in a quantitative manner over long monitoring times. Herein, we present the fabrication and application of an electrochemical biosensor that enables real-time continuous monitoring of O release in cell cultures for extended periods (> 8 h) using an O specific microelectrode.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) pose a significant threat to the environment due to their persistence, ability to bioaccumulate, and harmful effects. Methods to quantify PFAS rapidly and effectively are essential to analyze and track contamination, but measuring PFAS down to the ultralow regulatory levels is extremely challenging. Here, we describe the development of a low-cost sensor that can measure a representative PFAS, perfluorooctanesulfonic acid (PFOS), at the parts per quadrillion (ppq) level within 5 min.
View Article and Find Full Text PDFTwo-dimensional (2D) layered materials that integrate metallic conductivity, catalytic activity and the ability to stabilize biological receptors provide unique capabilities for designing electrochemical biosensors for large-scale detection and diagnostic applications. Herein, we report a multifunctional MXene-based 2D nanostructure decorated with enzyme mimetic cerium oxide nanoparticle (MXCeO) as a novel platform and catalytic amplifier for electrochemical biosensors, specifically targeting the detection of oxidase enzyme substrates. We demonstrate enhanced catalytic efficiency of the MXCeO for the reduction of hydrogen peroxide (HO) and its ability to immobilize oxidase enzymes, such as glucose oxidase, lactate oxidase and xanthine oxidase.
View Article and Find Full Text PDFNanoelectrochemistry allows for the investigation of the interaction of per- and polyfluoroalkyl substances (PFASs) with silver nanoparticles (AgNPs) and the elucidation of the binding behaviour of PFASs to nanoscale surfaces with high sensitivity. Mechanistic studies supported by single particle collision electrochemistry (SPCE), spectroscopic and density functional theory (DFT) calculations indicate the capability of polyfluorooctane sulfonic acid (PFOS), a representative PFAS, to selectively bind and induce aggregation of AgNPs. Single-particle measurements provide identification of the "discrete" AgNPs agglomeration (e.
View Article and Find Full Text PDFBackground: Genome-wide sequencing has emerged as a promising strategy for the timely diagnosis of rare diseases, but it is not yet available as a clinical test performed in Canadian diagnostic laboratories. We describe the protocol for evaluating a 2-year pilot project, Genome-wide Sequencing Ontario, to offer high-quality clinical genome-wide sequencing in Ontario, Canada.
Methods: The Genome-wide Sequencing Ontario protocol was codesigned by the Ontario Ministry of Health, the Hospital for Sick Children in Toronto and the Children's Hospital of Eastern Ontario in Ottawa.
Current advancements in the development of functional nanomaterials and precisely designed nanostructures have created new opportunities for the fabrication of practical biosensors for field analysis. Two-dimensional (2D) and three-dimensional (3D) nanomaterials provide unique hierarchical structures, high surface area, and layered configurations with multiple length scales and porosity, and the possibility to create functionalities for targeted recognition at their surface. Such hierarchical structures offer prospects to tune the characteristics of materials-e.
View Article and Find Full Text PDFImportance: Pharmacogenomic (PGx) testing provides preemptive pharmacotherapeutic guidance regarding the lack of therapeutic benefit or adverse drug reactions of PGx targeted drugs. Pharmacogenomic information is of particular value among children with complex medical conditions who receive multiple medications and are at higher risk of developing adverse drug reactions.
Objectives: To assess the implementation outcomes of a PGx testing program comprising both a point-of-care model that examined targeted drugs and a preemptive model informed by whole-genome sequencing that evaluated a broad range of drugs for potential therapy among children in a pediatric tertiary care setting.
Sensors (Basel)
September 2020
MXenes are recently developed 2D layered nanomaterials that provide unique capabilities for bioanalytical applications. These include high metallic conductivity, large surface area, hydrophilicity, high ion transport properties, low diffusion barrier, biocompatibility, and ease of surface functionalization. MXenes are composed of transition metal carbides, nitrides, or carbonitrides and have a general formula MX, where M is an early transition metal while X is carbon and/or nitrogen.
View Article and Find Full Text PDFA quenching based apta-sensing platform was developed for the detection of Patulin. Three different aptamer sequences were studied to screen the aptamer with the maximum affinity towards Patulin. Carboxyfluorescein (CFL) was used as a fluorescent dye while -COOH functionalized multiwall carbon nanotubes (MWCNTs) were applied as novel nanoquenchers.
View Article and Find Full Text PDFIn the present work, an aptasensing platform was developed for the detection of a carcinogenic mycotoxin termed patulin (PAT) using a label-free approach. The detection was mainly based on a specific interaction of an aptamer immobilized on carbon-based electrode. A long linear spacer of carboxy-amine polyethylene glycol chain (PEG) was chemically grafted on screen-printed carbon electrodes (SPCEs) via diazonium salt in the aptasensor design.
View Article and Find Full Text PDFSmall molecule toxins such as mycotoxins with low molecular weight are the most widely studied biological toxins. These biological toxins are responsible for food poisoning and have the potential to be used as biological warfare agents at the toxic dose. Due to the poisonous nature of mycotoxins, effective analysis techniques for quantifying their toxicity are indispensable.
View Article and Find Full Text PDFObjective: To characterise sleep quality and assess degree of daytime sleepiness among medical students of Karachi.
Methods: The cross-sectional study was conducted between August and December 2013 and subjects were recruited from five haphazardly selected medical colleges in Karachi. A convenience sample of medical students underwent two validated self-administered questionnaires i.