The cytoplasmic steps of peptidoglycan synthesis represent an important targeted pathway for development of new antibiotics. Herein, we report the synthesis of novel 3-oxopyrazolidin-4-carboxamide derivatives with variable amide side chains as potential antibacterial agents targeting MurA enzyme, the first committed enzyme in these cytosolic steps. Compounds 15 (isoindoline-1,3-dione-5-yl), 16 (4-(1H-pyrazol-4-yl)phenyl), 20 (5-cyanothiazol-2-yl), 21 and 31 (5-nitrothiazol-2-yl derivatives) exhibited the most potent MurA inhibition, with IC values of 9.
View Article and Find Full Text PDFFor many inflammatory diseases, new effective drugs with fewer side effects are needed. While it appears promising to target the activation of the central pro-inflammatory transcription factor NF-κB, many previously discovered agents suffered from cytotoxicity. In this study, new alkylthiourea quinazoline derivatives were developed that selectively inhibit the activation of NF-κB in macrophage-like THP-1 cells while showing low general cytotoxicity.
View Article and Find Full Text PDFThe transcription factor NF-κB is a pivotal mediator of chronic inflammatory and autoimmune diseases. Based on our previously published dual EGFR/NF-κB inhibitors, we designed and synthesized new thiourea quinazoline derivatives that retained only the NF-κB inhibitory activity. Several congeners displayed a strong suppression of NF-κB activity in a reporter gene assay, yet low cytotoxicity, and were further evaluated in differentiated macrophage-like THP-1 cells.
View Article and Find Full Text PDF