Objective: Class 3 semaphorins are reduced in the synovial tissue of RA patients and these proteins are involved in the pathogenesis of the disease. The aim of this study was to identify the transcription factors involved in the expression of class 3 semaphorins in the synovium of RA patients.
Methods: Protein and mRNA expression in synovial tissue from RA and individuals at risk (IAR) patients, human umbilical vein endothelial cells (HUVEC) and RA fibroblast-like synoviocytes (FLS) was determined by ELISA, immunoblotting and quantitative PCR.
Objective: Semaphorin 3B (Sema3B) decreases the migratory and invasive capacities of fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA) and suppresses expression of matrix metalloproteinases. We undertook this study to examine the role of Sema3B in a mouse model of arthritis and its expression in RA patients.
Methods: Clinical responses, histologic features, and FLS function were examined in wild-type (WT) and Sema3B mice in a K/BxN serum transfer model of arthritis.
Objective: SSc is a complex disease characterized by vascular abnormalities and inflammation culminating in hypoxia and excessive fibrosis. Previously, we identified chemokine (C-X-C motif) ligand 4 (CXCL4) as a novel predictive biomarker in SSc. Although CXCL4 is well-studied, the mechanisms driving its production are unclear.
View Article and Find Full Text PDFNew therapeutic approaches to resolve persistent pain are highly needed. We tested the hypothesis that manipulation of cytokine receptors on sensory neurons by clustering regulatory cytokine receptor pairs with a fusion protein of interleukin (IL)-4 and IL-10 (IL4-10 FP) would redirect signaling pathways to optimally boost pain-resolution pathways. We demonstrate that a population of mouse sensory neurons express both receptors for the regulatory cytokines IL-4 and IL-10.
View Article and Find Full Text PDFJ Transl Autoimmun
September 2020
Rheumatoid arthritis (RA) is chronic autoimmune disease which etiology remains unknown. Several cell types have been described to potentiate/aggravate the arthritic process however the initiating event in synovial inflammation is still elusive. Dendritic cells (DCs) are essential for the initiation of primary immune responses and thus we hypothesized that these cells might be crucial for RA induction.
View Article and Find Full Text PDFObjectives: SSc is an autoimmune disease characterized by inflammation, vascular injury and excessive fibrosis in multiple organs. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that regulates processes involved in SSc pathology, such as inflammation and fibrosis. In vivo and in vitro studies have implicated SPARC in SSc, but it is unclear if the pro-fibrotic effects of SPARC on fibroblasts are a result of intracellular signalling or fibroblast interactions with extracellular SPARC hampering further development of SPARC as a potential therapeutic target.
View Article and Find Full Text PDFObjective: To examine the role of Tie2 signalling in macrophage activation within the context of the inflammatory synovial microenvironment present in patients with RA and PsA.
Methods: Clinical responses and macrophage function were examined in wild-type and Tie2-overexpressing (Tie2-TG) mice in the K/BxN serum transfer model of arthritis. Macrophages derived from peripheral blood monocytes from healthy donors, RA and PsA patients, and RA and PsA synovial tissue explants were stimulated with TNF (10 ng/ml), angiopoietin (Ang)-1 or Ang-2 (200 ng/ml), or incubated with an anti-Ang2 neutralizing antibody.
Objective: To analyze the potential role of semaphorin 4A (Sema4A) in inflammatory and fibrotic processes involved in the pathology of systemic sclerosis (SSc).
Methods: Sema4A levels in the plasma of healthy controls (n = 11) and SSc patients (n = 20) were determined by enzyme-linked immunosorbent assay (ELISA). The expression of Sema4A and its receptors in monocytes and CD4+ T cells from healthy controls and SSc patients (n = 6-7 per group) was determined by ELISA and flow cytometry.
Background And Objective: Systemic sclerosis (SSc) is a severe autoimmune disease, in which the pathogenesis is dependent on both genetic and epigenetic factors. Altered gene expression in SSc monocytes, particularly of interferon (IFN)-responsive genes, suggests their involvement in SSc development. We investigated the correlation between epigenetic histone marks and gene expression in SSc monocytes.
View Article and Find Full Text PDFSystemic sclerosis (SSc) is a severe autoimmune disease that is characterized by vascular abnormalities, immunological alterations and fibrosis of the skin and internal organs. The results of genetic studies in patients with SSc have revealed statistically significant genetic associations with disease manifestations and progression. Nevertheless, genetic susceptibility to SSc is moderate, and the functional consequences of genetic associations remain only partially characterized.
View Article and Find Full Text PDFObjective: Class 3 semaphorins regulate diverse cellular processes relevant to the pathology of RA, including immune modulation, angiogenesis, apoptosis and invasive cell migration. Therefore, we analysed the potential role of class 3 semaphorins in the pathology of RA.
Methods: Protein and mRNA expression in RA synovial tissue, SF and fibroblast-like synoviocytes (FLS) were determined by immunoblotting and quantitative PCR (qPCR).
Background: Endoplasmic reticulum (ER) stress has proinflammatory properties, and transgenic animal studies of rheumatoid arthritis (RA) indicate its relevance in the process of joint destruction. Because currently available studies are focused primarily on myeloid cells, we assessed how ER stress might affect the inflammatory responses of stromal cells in RA.
Methods: ER stress was induced in RA fibroblast-like synoviocytes (FLS), dermal fibroblasts, and macrophages with thapsigargin or tunicamycin alone or in combination with Toll-like receptor (TLR) ligands, and gene expression and messenger RNA (mRNA) stability was measured by quantitative polymerase chain reaction.
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects females three times more frequently than males. A potential role for hormones, such as prolactin (PRL), may in part explain this phenomenon. The risk of developing RA is increased in women who are lactating after the first pregnancy, which might be related to breastfeeding and the release of PRL.
View Article and Find Full Text PDFProlactin (PRL) is a neuroendocrine hormone that can promote inflammation. We examined the synovial tissue and fluid levels of PRL in patients with inflammatory arthritis, PRL expression in differentiated Mϕs from patients with arthritis and from healthy donors, and the effects of different stimuli on PRL production by Mϕs. PRL levels were measured in paired synovial fluid (SF) and peripheral blood of patients with rheumatoid arthritis (RA, = 19), psoriatic arthritis (PsA, = 11), and gout ( = 11).
View Article and Find Full Text PDFObjective: Plasmacytoid dendritic cells (PDCs) are a critical source of type I interferons (IFNs) that can contribute to the onset and maintenance of autoimmunity. Molecular mechanisms leading to PDC dysregulation and a persistent type I IFN signature are largely unexplored, especially in patients with systemic sclerosis (SSc), a disease in which PDCs infiltrate fibrotic skin lesions and produce higher levels of IFNα than those in healthy controls. This study was undertaken to investigate potential microRNA (miRNA)-mediated epigenetic mechanisms underlying PDC dysregulation and type I IFN production in SSc.
View Article and Find Full Text PDFGrowing evidence supports the idea that aberrancies in epigenetic processes contribute to the onset and progression of human immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA). Epigenetic regulators of histone tail modifications play a role in chromatin accessibility and transcriptional responses to inflammatory stimuli. Among these, histone deacetylases (HDACs) regulate the acetylation status of histones and nonhistone proteins, essential for immune responses.
View Article and Find Full Text PDFTranscription of inflammatory genes is tightly regulated by acetylation and deacetylation of histone tails. An inhibitor of the acetylated-lysine reader bromodomain and extra-terminal domain (BET) proteins, I-BET151, is known to counteract the induction of expression of inflammatory genes in macrophages. We have investigated the effects of I-BET151 on dendritic cell function, including expression of co-stimulatory molecules and cytokines, and capacity for T cell activation.
View Article and Find Full Text PDFObjectives: Prolactin (PRL) is a lactation-inducing hormone with immunomodulatory properties and is found at elevated levels in the serum of patients with RA and other rheumatic diseases. The PRL receptor (PRLR) has been shown to be expressed by macrophages in atherosclerotic plaques. The aim of this study was to examine PRLR expression by synovial macrophages and its role in the regulation of macrophage activation.
View Article and Find Full Text PDFBackground: CSF-1 or IL-34 stimulation of CSF1R promotes macrophage differentiation, activation and osteoclastogenesis, and pharmacological inhibition of CSF1R is beneficial in animal models of arthritis. The objective of this study was to determine the relative contributions of CSF-1 and IL-34 signaling to CSF1R in RA.
Methods: CSF-1 and IL-34 were detected by immunohistochemical and digital image analysis in synovial tissue from 15 biological-naïve rheumatoid arthritis (RA) , 15 psoriatic arthritis (PsA) and 7 osteoarthritis (OA) patients .
Objective: To investigate the effects of BET bromodomain protein inhibition on inflammatory activation and functional properties of rheumatoid arthritis synovial fibroblasts (RASF).
Methods: The expression of the BET bromodomain proteins BRD2, BRD3 and BRD4 was analysed in synovial tissue by immunohistochemistry. RASF were stimulated with tumour necrosis factor (TNF)-α, interleukin (IL)-1β and toll-like receptor (TLR) ligands (Pam3, pIC and lipopolysaccharide (LPS)) in the presence or absence of the BET inhibitor I-BET151, or siRNA targeting BRD2, BRD3 and BRD4.
Objectives: Epigenetic modifications play an important role in the regulation of gene transcription and cellular function. Here, we examined if pro-inflammatory factors present in the inflamed joint of patients with rheumatoid arthritis (RA) could regulate histone deacetylase (HDAC) expression and function in fibroblast-like synoviocytes (FLS).
Methods: Protein acetylation in synovial tissue was assessed by immunohistochemistry.
Biochem Biophys Res Commun
December 2014
Macrophages determine the outcome of atherosclerosis by propagating inflammatory responses, foam cell formation and eventually necrotic core development. Yet, the pathways that regulate their atherogenic functions remain ill-defined. It is now apparent that chromatin remodeling chromatin modifying enzymes (CME) governs immune responses but it remains unclear to what extent they control atherogenic macrophage functions.
View Article and Find Full Text PDF