Publications by authors named "Reeder M Robinson"

The histone deacetylase inhibitor (HDACi), panobinostat (Pano), is approved by the United States Food and Drug Administration (FDA) and European Medicines Agency (EMA) for treatment of relapsed/refractory multiple myeloma (MM). Despite regulatory approvals, Pano is used on a limited basis in MM due largely to an unfavorable toxicity profile. The MM treatment landscape continues to evolve, and for Pano to maintain a place in that paradigm it will be necessary to identify treatment regimens that optimize its effectiveness, particularly those that permit dose reductions to eliminate unwanted toxicity.

View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDACi) are largely ineffective in the treatment of solid tumors. In this study, we describe a new class of protein disulfide isomerase (PDI) inhibitors that significantly and synergistically enhance the antitumor activity of HDACi in glioblastoma and pancreatic cancer preclinical models. RNA-sequencing screening coupled with gene silencing studies identified ATF3 as the driver of this antitumor synergy.

View Article and Find Full Text PDF

Protein disulfide isomerase (PDI, PDIA1) is an emerging therapeutic target in oncology. PDI inhibitors have demonstrated a unique propensity to selectively induce apoptosis in cancer cells and overcome resistance to existing therapies, although drug candidates have not yet progressed to the stage of clinical development. We recently reported the discovery of lead indene compound E64FC26 as a potent pan-PDI inhibitor that enhances the cytotoxic effects of proteasome inhibitors in panels of Multiple Myeloma (MM) cells and MM mouse models.

View Article and Find Full Text PDF

Multiple myeloma (MM) and mantle cell lymphoma (MCL) are blood cancers that respond to proteasome inhibitors. Three FDA-approved drugs that block the proteasome are currently on the market, bortezomib, carfilzomib, and ixazomib. While these proteasome inhibitors have demonstrated clinical efficacy against refractory and relapsed MM and MCL, they are also associated with considerable adverse effects including peripheral neuropathy and cardiotoxicity, and tumor cells often acquire drug resistance.

View Article and Find Full Text PDF

Multiple Myeloma (MM) is highly sensitive to disruptions in cellular protein homeostasis. Proteasome inhibitors (PIs) are initially effective in the treatment of MM, although cures are not achievable and the emergence of resistance limits the durability of responses. New therapies are needed for refractory patients, and those that combat resistance to standard of care agents would be particularly valuable.

View Article and Find Full Text PDF

Siderophore A (SidA) from Aspergillus fumigatus is a flavin-containing monooxygenase that hydroxylates ornithine (Orn) at the amino group of the side chain. Lysine (Lys) also binds to the active site of SidA; however, hydroxylation is not efficient and H O is the main product. The effect of pH on steady-state kinetic parameters was measured and the results were consistent with Orn binding with the side chain amino group in the neutral form.

View Article and Find Full Text PDF

Curative responses in the treatment of multiple myeloma (MM) are limited by the emergence of therapeutic resistance. To address this problem, we set out to identify druggable mechanisms that convey resistance to proteasome inhibitors (PIs; e.g.

View Article and Find Full Text PDF

N-Hydroxylating monooxygenases are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs.

View Article and Find Full Text PDF

The mechanism of Mycobacterium smegmatis G (MbsG), a flavin-dependent l-lysine monooxygenase, was investigated under steady-state and rapid reaction conditions using primary and solvent kinetic isotope effects, substrate analogs, pH and solvent viscosity effects as mechanistic probes. The results suggest that l-lysine binds before NAD(P)H, which leads to a decrease in the rate constant for flavin reduction. l-lysine binding has no effect on the rate of flavin oxidation, which occurs in a one-step process without the observation of a C4a-hydroperoxyflavin intermediate.

View Article and Find Full Text PDF

Flavin-dependent monooxygenase (FMO) from Methylophaga sp. strain SK1 catalyzes the NADPH- and oxygen-dependent hydroxylation of a number of xenobiotics. Reduction of the flavin cofactor by NADPH is required for activation of molecular oxygen.

View Article and Find Full Text PDF

UDP-galactopyranose mutase (UGM) plays an essential role in galactofuranose biosynthesis in microorganisms by catalyzing the conversion of UDP-galactopyranose to UDP-galactofuranose. The enzyme has gained attention recently as a promising target for the design of new antifungal, antitrypanosomal, and antileishmanial agents. Here we report the first crystal structure of UGM complexed with its redox partner NAD(P)H.

View Article and Find Full Text PDF