Publications by authors named "Reed Riddle"

Neutron stars and stellar-mass black holes are the remnants of massive star explosions. Most massive stars reside in close binary systems, and the interplay between the companion star and the newly formed compact object has been theoretically explored, but signatures for binarity or evidence for the formation of a compact object during a supernova explosion are still lacking. Here we report a stripped-envelope supernova, SN 2022jli, which shows 12.

View Article and Find Full Text PDF

In recent years, certain luminous extragalactic optical transients have been observed to last only a few days. Their short observed duration implies a different powering mechanism from the most common luminous extragalactic transients (supernovae), whose timescale is weeks. Some short-duration transients, most notably AT2018cow (ref.

View Article and Find Full Text PDF

Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx.

View Article and Find Full Text PDF

White dwarfs, the extremely dense remnants left behind by most stars after their death, are characterized by a mass comparable to that of the Sun compressed into the size of an Earth-like planet. In the resulting strong gravity, heavy elements sink towards the centre and the upper layer of the atmosphere contains only the lightest element present, usually hydrogen or helium. Several mechanisms compete with gravitational settling to change a white dwarf's surface composition as it cools, and the fraction of white dwarfs with helium atmospheres is known to increase by a factor of about 2.

View Article and Find Full Text PDF

Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf stars destabilized by mass accretion from a companion star, but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds or binary interaction before explosion, and the supernova ejecta crashing into this nearby circumstellar material should result in radio synchrotron emission. However, despite extensive efforts, no type Ia supernova (SN Ia) has ever been detected at radio wavelengths, which suggests a clean environment and a companion star that is itself a degenerate white dwarf star.

View Article and Find Full Text PDF

Planets with short orbital periods (roughly under 10 days) are common around stars like the Sun. Stars expand as they evolve and thus we expect their close planetary companions to be engulfed, possibly powering luminous mass ejections from the host star. However, this phase has never been directly observed.

View Article and Find Full Text PDF

Tidal disruption events (TDEs) are bursts of electromagnetic energy that are released when supermassive black holes at the centres of galaxies violently disrupt a star that passes too close. TDEs provide a window through which to study accretion onto supermassive black holes; in some rare cases, this accretion leads to launching of a relativistic jet, but the necessary conditions are not fully understood. The best-studied jetted TDE so far is Swift J1644+57, which was discovered in γ-rays, but was too obscured by dust to be seen at optical wavelengths.

View Article and Find Full Text PDF

Of more than a thousand known cataclysmic variables (CVs), where a white dwarf is accreting from a hydrogen-rich star, only a dozen have orbital periods below 75 minutes. One way to achieve these short periods requires the donor star to have undergone substantial nuclear evolution before interacting with the white dwarf, and it is expected that these objects will transition to helium accretion. These transitional CVs have been proposed as progenitors of helium CVs.

View Article and Find Full Text PDF

Over a dozen millisecond pulsars are ablating low-mass companions in close binary systems. In the original 'black widow', the eight-hour orbital period eclipsing pulsar PSR J1959+2048 (PSR B1957+20), high-energy emission originating from the pulsar is irradiating and may eventually destroy a low-mass companion. These systems are not only physical laboratories that reveal the interesting results of exposing a close companion star to the relativistic energy output of a pulsar, but are also believed to harbour some of the most massive neutron stars, allowing for robust tests of the neutron star equation of state.

View Article and Find Full Text PDF

General relativity predicts that short-orbital-period binaries emit considerable amounts of gravitational radiation. The upcoming Laser Interferometer Space Antenna (LISA) is expected to detect tens of thousands of such systems but few have been identified, of which only one is eclipsing-the double-white-dwarf binary SDSS J065133.338+284423.

View Article and Find Full Text PDF

The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e.

View Article and Find Full Text PDF

Differential image motion monitors (DIMMs) have become the industry standard for astronomical site characterization. The calibration of DIMMs is generally considered to be routine, but we show that particular care must be paid to this issue if high-accuracy measurements are to be achieved. In a side by side comparison of several DIMMs, we demonstrate that with proper care we can achieve an agreement between the seeing measurements of two DIMMS operating under the same conditions to better than +/-0.

View Article and Find Full Text PDF