A precise description of traits is essential in genetics and genomics studies to facilitate comparative genetics and meta-analyses. It is an ongoing challenge in research and production environments to unambiguously and consistently compare traits of interest from data collected under various conditions. Despite previous efforts to standardize trait nomenclature, it remains a challenge to fully and accurately capture trait nomenclature granularity in a way that ensures long-term data sustainability in terms of the data curation processes, data management logistics and the ability to make meaningful comparisons across studies.
View Article and Find Full Text PDFPork is of great importance in world trade and represents the largest source of fatty acids in the human diet. Lipid sources such as soybean oil (SOY), canola (CO), and fish oil (FO) are used in pig diets and influence blood parameters and the ratio of deposited fatty acids. In this study, the main objective was to evaluate changes in gene expression in porcine skeletal muscle tissue resulting from the dietary oil sources and to identify metabolic pathways and biological process networks through RNA-Seq.
View Article and Find Full Text PDFBackground: The high similarity in anatomical and neurophysiological processes between pigs and humans make pigs an excellent model for metabolic diseases and neurological disorders. Lipids are essential for brain structure and function, and the polyunsaturated fatty acids (PUFA) have anti-inflammatory and positive effects against cognitive dysfunction in neurodegenerative diseases. Nutrigenomics studies involving pigs and fatty acids (FA) may help us in better understanding important biological processes.
View Article and Find Full Text PDFPigs () are an animal model for metabolic diseases in humans. Pork is an important source of fatty acids (FAs) in the human diet, as it is one of the most consumed meats worldwide. The effects of dietary inclusion of oils such as canola, fish, and soybean oils on pig gene expression are mostly unknown.
View Article and Find Full Text PDFAnimal feeding is a critical factor in increasing producer profitability. Improving feed efficiency can help reduce feeding costs and reduce the environmental impact of beef production. Candidate genes previously identified for this trait in differential gene expression studies (e.
View Article and Find Full Text PDFThe aim of this study was to identify the differentially expressed genes (DEG) from the skeletal muscle and liver samples of animal models for metabolic diseases in humans. To perform the study, the fatty acid (FA) profile and RNA sequencing (RNA-Seq) data of 35 samples of liver tissue (SOY1.5, = 17 and SOY3.
View Article and Find Full Text PDFDietary fatty acids (FA) are components of the lipids, which contribute to membrane structure, energy input, and biological functions related to cellular signaling and transcriptome regulation. However, the consumers still associate dietary FA with fat deposition and increased occurrence of metabolic diseases such as obesity and atherosclerosis. Previous studies already demonstrated that some fatty acids are linked with inflammatory response, preventing metabolic diseases.
View Article and Find Full Text PDFThe impact of extreme changes in weather patterns on the economy and human welfare is one of the biggest challenges our civilization faces. From anthropogenic contributions to climate change, reducing the impact of farming activities is a priority since it is responsible for up to 18% of global greenhouse gas emissions. To this end, we tested whether ruminal and stool microbiome components could be used as biomarkers for methane emission and feed efficiency in bovine by studying 52 Brazilian Nelore bulls belonging to two feed intervention treatment groups, that is, conventional and by-product-based diets.
View Article and Find Full Text PDFThe runs of homozygosity (ROH) were identified in 14 Pakistani cattle breeds ( = 105) by genotyping with the Illumina 50 K SNP BeadChip. These breeds were categorized into Dairy, Dual, and Draft breeds based on their utility and production performance. We identified a total of 10,936 ROHs which mainly consisted of a high number of shorter segments (1-4 Mb).
View Article and Find Full Text PDFMastitis, a disease with high incidence worldwide, is the most prevalent and costly disease in the dairy industry. Gram-negative bacteria such as () are assumed to be among the leading agents causing acute severe infection with clinical signs. , environmental mastitis pathogens, are the primary etiological agents of bovine mastitis in well-managed dairy farms.
View Article and Find Full Text PDFThe Animal QTLdb (https://www.animalgenome.org/QTLdb) and CorrDB (https://www.
View Article and Find Full Text PDFLivestock is an important commodity playing a major role in the global economy. Red meat plays an important role in human life, as it is a good source of animal protein and energy. The fatty acid content of beef has been shown to impact the eating experience and nutritional value of beef.
View Article and Find Full Text PDFWe conducted a study to identify the fecal metabolite profile and its proximity to the ruminal metabolism of Nelore steers based on an untargeted metabolomic approach. Twenty-six Nelore were feedlot with same diet during 105 d. Feces and rumen fluid were collected before and at slaughter, respectively.
View Article and Find Full Text PDFGenomic tools have improved the ability to manage bison populations and enhanced efforts to conserve this iconic species. These tools have been particularly useful for detecting introgression of cattle genome within bison herds but are limited by the need to use the cattle genome as a surrogate for mapping reads. This complicates efforts to distinguish the species of origin of chromosomal segments in individual bison at the genomic level.
View Article and Find Full Text PDFBackground: Porcine reproductive and respiratory syndrome (PRRS) is a threat to pig production worldwide. Our objective was to understand mechanisms of persistence of PRRS virus (PRRSV) in tonsil. Transcriptome data from tonsil samples collected at 42 days post infection (dpi) were generated by RNA-seq and NanoString on 51 pigs that were selected to contrast the two PRRSV isolates used, NVSL and KS06, high and low tonsil viral level at 42 dpi, and the favorable and unfavorable genotypes at a genetic marker (WUR) for the putative PRRSV resistance gene GBP5.
View Article and Find Full Text PDFTenderness is a major quality attribute for fresh beef steaks in the United States, and meat quality traits in general are suitable candidates for genomic research. The objectives of the present analysis were to (1) perform genome-wide association (GWA) analysis for marbling, Warner-Bratzler shear force (WBSF), tenderness, and connective tissue using whole-genome data in an Angus population, (2) identify enriched pathways in each GWA analysis; (3) construct a protein-protein interaction network using the associated genes and (4) perform a μ-calpain proteolysis assessment for associated structural proteins. An Angus-sired population of 2,285 individuals was assessed.
View Article and Find Full Text PDFThere have been several genome-wide association study (GWAS) reported for carcass, growth, and meat traits in chickens. Most of these studies have been based on single SNPs GWAS. In contrast, haplotype-based GWAS reports have been limited.
View Article and Find Full Text PDFBackground: The success of different species of ruminants in the colonization of a diverse range of environments is due to their ability to digest and absorb nutrients from cellulose, a complex polysaccharide found in leaves and grass. Ruminants rely on a complex and diverse microbial community, or microbiota, in a unique compartment known as the rumen to break down this polysaccharide. Changes in microbial populations of the rumen can affect the host's development, health, and productivity.
View Article and Find Full Text PDFAutomated high-throughput phenotyping with sensors, imaging, and other on-farm technologies has resulted in a flood of data that are largely under-utilized. Drastic cost reductions in sequencing and other omics technology have also facilitated the ability for deep phenotyping of livestock at the molecular level. These advances have brought the animal sciences to a cross-roads in data science where increased training is needed to manage, record, and analyze data to generate knowledge and advances in Agriscience related disciplines.
View Article and Find Full Text PDFBackground: Feed efficiency and growth rate have been targets for selection to improve chicken production. The incorporation of genomic tools may help to accelerate selection. We genotyped 529 individuals using a high-density SNP chip (600 K, Affymetrix®) to estimate genomic heritability of performance traits and to identify genomic regions and their positional candidate genes associated with performance traits in a Brazilian F Chicken Resource population.
View Article and Find Full Text PDFThis commentary is a comprehensive synthesis of ideas generated from a workshop, hosted by Iowa State University, encompassing precision livestock farming (PLF) research and applications for industry-academia. The goal of this workshop was to demonstrate existing institution research and strategically propel further PLF development and industry adoption. Six key thematic areas were identified from participant discussion: sensors and algorithms, implementation, economic feasibility, data, rural and societal impacts, and education and training.
View Article and Find Full Text PDF