Addressing environmental concerns and producing sustainable and environmentally friendly electronic devices with low power consumption poses a significant challenge. This study introduces phototransistor devices employing morphologically controlled block copolymers based on maltotriose, maltoheptaose, and β-cyclodextrin as polymer electrets. Ordered self-assembled morphologies can be achieved by utilizing microwave radiation for rapid annealing (within 5 s) with optimized annealing conditions.
View Article and Find Full Text PDFTop and bottom interfaces of high-χ cylinder-forming polystyrene--maltoheptaose (PSMH) diblock copolymer (BCP) thin films are manipulated using cross-linked copolymer underlayers and a fluorinated phase-preferential surface-active polymer (SAP) additive to direct the self-assembly (both morphology and orientation) of BCP microdomains into sub-10 nm patterns. A series of four photo-cross-linkable statistical copolymers with various contents of styrene, a 4-vinylbenzyl azide cross-linker, and a carbohydrate-based acrylamide are processed into 15 nm-thick cross-linked passivation layers on silicon substrates. A partially fluorinated analogue of the PSMH phase-preferential SAP additive is designed to tune the surface energy of the top interface.
View Article and Find Full Text PDFHere we describe the design and the characterization of novel electrode materials consisting of multi-walled carbon nanotubes coated with glyconanoparticles (GNPs) functionalized with anthraquinone sulfonate. The resulting modified electrodes were characterized by scanning electron microscopy and cyclic voltammetry. Their electrochemical behavior reveals a stable pH-dependent redox signal characteristic of anthraquinone sulfonate.
View Article and Find Full Text PDFCarbohydrates are key building blocks for advanced functional materials owing to their biological functions and unique material properties. Here, we propose a star-shaped discrete block co-oligomer (BCO) platform to access carbohydrate nanostructures in bulk and thin-film states via the microphase separation of immiscible carbohydrate and hydrophobic blocks (maltooligosaccharides with 1-4 glucose units and solanesol, respectively). BCOs with various star-shaped architectures and saccharide volume fractions were synthesized using a modular approach.
View Article and Find Full Text PDFMetal halide perovskite nanocrystals (PVSK NCs) are generally unstable upon their transfer from colloidal dispersions to thin film devices. This has been a major obstacle limiting their widespread application. In this study, we proposed a new approach to maintain their exceptional optoelectronic properties during this transfer by dispersing brightly emitting cesium lead halide PVSK NCs in polysaccharide-based maltoheptaose--polyisoprene--maltoheptaose (MH--PI--MH) triblock copolymer (BCP) matrices.
View Article and Find Full Text PDFBlock copolymers (BCPs) have garnered considerable interest due to their ability to form microphase-separated structures suitable for nanofabrication. For these applications, it is critical to achieve both sufficient etch selectivity and a small domain size. To meet both requirements concurrently, we propose the use of oligosaccharide and oligodimethylsiloxane as hydrophilic and etch-resistant hydrophobic inorganic blocks, respectively, to build up a novel BCP system, i.
View Article and Find Full Text PDFWe designed and synthesized high χ-low -maltoheptaose-(triazolium/N(SOCF))-polyisoprene-(triazolium/N(SOCF))-maltoheptaose ABA triblock elastomers featuring triazolium/N(SOCF) (TFSI) counteranion ionic interfaces separating their constituting polymeric sub-blocks. Spin-coated and solvent-vapor-annealed (SVA) MH-(T/TFSI)-PI-(T/TFSI)-MH thin films demonstrate interface-induced charge cohesion through ca. 1 nm "thick" ionic nanochannels which facilitate the self-assembly of a perpendicularly aligned lamellar structure.
View Article and Find Full Text PDFThe fluorescent organic 2,5,8-tris((adamantan-1-yl)-methoxy)-heptazine (HTZ-Ad) was solubilized in water by inclusion of adamantane groups into free β-cyclodextrins or a cyclodextrin shell of glyconanoparticles. These glyconanoparticles with average diameters between 40 and 60 nm result from the self-assembly of polystyrene--β-cyclodextrin copolymers. Under UV irradiation at 365 nm, the modified nanoparticles exhibit fluorescence emission in aqueous media as well as in their adsorbed state.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common age-related neurodegenerative disorder. Levodopa (L-DOPA) remains the gold-standard drug available for treating PD. Curcumin has many pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anti-amyloid, and antitumor properties.
View Article and Find Full Text PDFVapor phase infiltration into a self-assembled block copolymer (BCP) to create a hybrid material in one of the constituent blocks can enhance the etch selectivity for pattern transfer. Multiple pulse infiltration into carbohydrate-based high- BCP has previously been shown to enable sub-10 nm feature pattern transfer. By optimizing the amount of infiltrated material, the etch selectivity should be further improved.
View Article and Find Full Text PDFGlyconanoparticles (GNPs) made by self-assembly of carbohydrate-based polystyrene-block-β-cyclodextrin copolymer are used as a building block for the design of nanostructured biomaterials of electrode. The firm immobilization of GNPs is carried out on electrochemically generated polymer, poly(pyrrole-adamantane), and copolymer, poly(pyrrole-adamantane)/poly(pyrrole-lactobionamide) via host-guest interactions between adamantane and β-cyclodextrin. The ability of GNPs for the specific anchoring of biological macromolecules is investigated using glucose oxidase enzyme modified by adamantane groups as a protein model (GOx-Ad).
View Article and Find Full Text PDFTamoxifen citrate (TMC), a non-steroidal antiestrogen drug used for the treatment of breast cancer, was loaded in a block copolymer of maltoheptaose--polystyrene (MH--PS) nanoparticles, a potential drug delivery system to optimize oral chemotherapy. The nanoparticles were obtained from self-assembly of MH-b-PS using the standard and reverse nanoprecipitation methods. The MH-b-PS@TMC nanoparticles were characterized by their physicochemical properties, morphology, drug loading and encapsulation efficiency, and release kinetic profile in simulated intestinal fluid (pH 7.
View Article and Find Full Text PDFSequential infiltration synthesis (SIS) into poly(styrene)--maltoheptaose (PS--MH) block copolymer using vapors of trimethyl aluminum and water was used to prepare nanostructured surface layers. Prior to the infiltration, the PS--MH had been self-assembled into 12 nm pattern periodicity. Scanning electron microscopy indicated that horizontal alumina-like cylinders of 4.
View Article and Find Full Text PDFA series of new glyconanoparticles (GNPs) was obtained by self-assembly by direct nanoprecipitation of a mixture of two carbohydrate amphiphilic copolymers consisting of polystyrene-block-β-cyclodextrin and polystyrene-block-maltoheptaose with different mass ratios, respectively 0-100, 10-90, 50-50 and 0-100%. Characterizations for all these GNPs were achieved using dynamic light scattering, scanning and transmission electron microscopy techniques, highlighting their spherical morphology and their nanometric size (diameter range 20-40 nm). In addition, by using the inclusion properties of cyclodextrin, these glyconanoparticles were successfully post-functionalized using a water-soluble redox compound, such as anthraquinone sulfonate (AQS) and characterized by cyclic voltammetry.
View Article and Find Full Text PDFA carbohydrate-based fullerene derivative (AcMal-C) is designed, synthesized and applied to a lamellar-forming high-χ block copolymer system, poly(3-hexylthiophene)-block-peracetylated maltoheptaose (P3HT-b-AcMal), to actualize an ordered donor/acceptor (D/A) network. A well-defined D/A lamellar structure of the P3HT-b-AcMal:AcMal-C blend with sub-10 nm domain features is achieved upon thermal annealing. The AcMal-C molecules are localized in the phase-separated AcMal nanodomains without causing the formation of fullerene crystals while maintaining the lamellar morphology up to 1:0.
View Article and Find Full Text PDFDiscrete block co-oligomers (BCOs) are gaining considerable attention due to their potential to form highly ordered ultrasmall nanostructures suitable for lithographic templates. However, laborious synthetic routes present a major hurdle to the practical application. Herein, we report a readily available discrete BCO system that is capable of forming various self-assembled nanostructures with ultrasmall periodicity.
View Article and Find Full Text PDFCsPbBr is a promising light-emitting material due to its wet solution processability, high photoluminescence quantum yield (PLQY), narrow color spectrum, and cost-effectiveness. Despite such advantages, the morphological defects, unsatisfactory carrier injection, and stability issues retard its widespread applications in light-emitting devices (LEDs). In this work, we demonstrated a facile and cost-effective method to improve the morphology, efficiency, and stability of the CsPbBr emissive layer using a dual polymeric encapsulation governed by an interface-assisted grain control process (IAGCP).
View Article and Find Full Text PDFWe report the resistive electrical memory characteristics controlled by the self-assembled nanostructures of maltoheptaose--polystyrene (MH--PS) block copolymers, where the MH and PS blocks provide the charge-trapping and the insulating tunneling layer, respectively. A simple solvent annealing process, with various annealing conditions, were introduced for MH--PS thin films to achieve disordered, orientated cylinders and ordered-packed spheres morphologies. More details about the self-assembled MH--PS nanostructures, coupled with different volume fractions between MH and PS blocks, were investigated using atomic force microscopy and grazing-incidence small-angle X-ray scattering analyses.
View Article and Find Full Text PDFThe promising carbohydrate-based block copolymer maltoheptaose-block-polystyrene (MH-b-PS) has been used for high-performance memory transistors and next generation nanolithography. In order to realize the potential of MH-b-PS especially in microelectronic applications, we firstly improved its synthetic method for obtaining large amount of copper-free MH-b-PS. The main improvement relies on the removal of the residual copper catalyst by using a chelating resin.
View Article and Find Full Text PDFSilver nanowire (AgNW) networks have attracted considerable attention as transparent electrodes for emerging flexible optoelectronics. However, the transference of such networks onto diverse arbitrary substrates with high conductivity remains a challenge because of the possibility of detaching and sliding occurring at the interface. Therefore, we developed a water-assisted transfer printing method for the fabrication and transfer of an AgNW-polydimethylsiloxane (PDMS) electrode.
View Article and Find Full Text PDFBackground: Posttransplant cell tracking, via stem cell labeling, is a crucial strategy for monitoring and maximizing benefits of cell-based therapies. The structures and functionalities of polysaccharides, proteins, and lipids allow their utilization in nanotechnology systems.
Materials And Methods: In the present study, we analyzed the potential benefit of curcumin-loaded nanoparticles (NPC) using Vero cells (in vitro) and NPC-labeled adipose-derived mesenchymal stem cells (NPC-ADMSCs) (in vivo) in myocardial infarction and sciatic nerve crush preclinical models.
Graft copolymers based on carboxymethylcellulose (CMC) and thermosensitive polyetheramines (ethylene oxide/propylene oxide = 33/10 and 1/9) were prepared in water, at room temperature, by using a carbodiimide and N-hydroxysuccinimide as activators. SLS was applied to obtain M, A and R of CMC and its derivatives. Amide linkages were evidenced by FTIR and grafting percentage was determined by H NMR.
View Article and Find Full Text PDFWe demonstrate self-assembly, characterization and bioelectrocatalysis of redox-active cyclodextrin-coated nanoparticles. The nanoparticles with host-guest functionality are easy to assemble and permit entrapment of hydrophobic redox molecules in aqueous solution. Bis-pyrene-ABTS encapsulated nanoparticles were investigated electrochemically and spectroscopically.
View Article and Find Full Text PDFWe report in this contribution that while low molecular weight hemicellulosic building blocks are known not to interact with cellulosic materials, their multivalent presentation on a polymeric scaffold significantly enhanced the binding interactions that are remarkably in the same range as those usually observed for lectin-carbohydrate interactions. We developed a poly(propargyl methacrylate) scaffold on which we conjugated, by "post-click" reaction, a variety of azide reducing-end functionalized xyloglucan oligosaccharides with controlled enzymatic-mediated rate of degalactosylation. Bottlebrush-like xyloglucan oligosaccharide glycopolymers (poly(XGO)) were obtained and their self-assemblies in aqueous solution were investigated using dynamic light scattering (DLS).
View Article and Find Full Text PDFBlock copolymers (BCP) can self-assemble into nanoscale patterns with a wide variety of applications in the semiconductor industry. The self-assembly of BCPs is commonly accomplished by solvent vapor or thermal annealing, but generally these methods require long time (few hours) to obtain nanostructured thin films. In this contribution, a new and ultrafast method (using microwaves) is proposed-high temperature solvent vapor annealing (HTSVA), combining solvent vapor annealing with thermal annealing, to achieve fast and controllable self-assembly of amphiphilic BCP thin films.
View Article and Find Full Text PDF