Publications by authors named "Redouane Allache"

The existence of neural stem cells (NSCs) in adult human brain neurogenic regions remains unresolved. To address this, we created a cell atlas of the adult human subventricular zone (SVZ) derived from fresh neurosurgical samples using single-cell transcriptomics. We discovered 2 adult radial glia (RG)-like populations, aRG1 and aRG2.

View Article and Find Full Text PDF

Background: Glioblastoma is a treatment-resistant brain cancer. Its hierarchical cellular nature and its tumor microenvironment (TME) before, during, and after treatments remain unresolved.

Methods: Here, we used single-cell RNA sequencing to analyze new and recurrent glioblastoma and the nearby subventricular zone (SVZ).

View Article and Find Full Text PDF

Cancer stem cells are critical for cancer initiation, development, and treatment resistance. Our understanding of these processes, and how they relate to glioblastoma heterogeneity, is limited. To overcome these limitations, we performed single-cell RNA sequencing on 53586 adult glioblastoma cells and 22637 normal human fetal brain cells, and compared the lineage hierarchy of the developing human brain to the transcriptome of cancer cells.

View Article and Find Full Text PDF

Planar cell polarity (PCP) signaling controls a number of morphogenetic processes including convergent extension during gastrulation and neural tube formation. Defects in this pathway cause neural tube defects (NTD), the most common malformations of the central nervous system. The Looptail (Lp) mutant mouse was the first mammalian mutant implicating a PCP gene (Vangl2) in the pathogenesis of NTD.

View Article and Find Full Text PDF

Scribble1 (Scrib1) is a tumor suppressor gene that has long been established as an essential component of apicobasal polarity (ABP). In mouse models, mutations in Scrib1 cause a severe form of neural tube defects (NTDs) as a result of a defective planar cell polarity (PCP) signaling. In this study, we dissected the role of Scrib1 in the pathogenesis of NTDs in its mouse mutant Circletail (Crc), in cell lines and in a human NTD cohort.

View Article and Find Full Text PDF

Background: Planar cell polarity (PCP) is a major branch of Wnt signaling that controls the process of convergent extension in gastrulation and neurulation. PCP defects were associated with neural tube defects (NTDs) that are the most common central nervous system anomalies. PCP signaling is highly dosage sensitive and exhibits an antagonistic relationship with the canonical Wnt/β-catenin pathway.

View Article and Find Full Text PDF

Wnt signaling has been classified as canonical Wnt/β-catenin-dependent or non-canonical planar cell polarity (PCP) pathway. Misregulation of either pathway is linked mainly to cancer or neural tube defects (NTDs), respectively. Both pathways seem to antagonize each other, and recent studies have implicated a number of molecular switches that activate one pathway while simultaneously inhibiting the other thereby partially mediating this antagonism.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs) are severe malformations that arise when the neural tube fails to close during embryogenesis. The planar cell polarity pathway is involved in neural tube closure and has been implicated in the pathogenesis of NTDs both in animal models and human cohorts. Dishevelled (Dvl/Dsh) is a multi-module protein and a key regulator of both the canonical Wnt and the PCP pathway.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs), including anencephaly and spina bifida, have a complex etiology. Defects in the planar cell polarity (PCP) signaling pathway have been strongly associated with NTDs in animal models and human cohorts. In this genetic study, we examined the core PCP gene CELSR1 in NTDs and caudal agenesis cases to determine whether mutations at this gene predispose to these defects.

View Article and Find Full Text PDF

The planar cell polarity (PCP) pathway controls the process of convergent extension (CE) during gastrulation and neural tube closure, and has been implicated in the pathogenesis of neural tube defects (NTDs) in animal models and human cohorts. In this study, we analyzed the role of one core PCP gene PRICKLE1 in these malformations. We screened this gene in 810 unrelated NTD patients and identified seven rare missense heterozygous mutations that were absent in all controls analyzed and predicted to be functionally deleterious using bioinformatics.

View Article and Find Full Text PDF

The epithelial sodium channel (ENaC) is the major rate-limiting step for vasopressin and aldosterone sensitive Na(+) reabsorption across kidney epithelia. Recently, ENaC activity was shown to be modulated by extracellular factors such as proteases, Na(+) ion and several other elements. However, the molecular mechanisms of these actions remain unclear.

View Article and Find Full Text PDF