Publications by authors named "Redeuilh G"

It has been proposed that the epithelial-mesenchymal transition (EMT) in mammary epithelial cells and breast cancer cells generates stem cell features. WISP2 (Wnt-1-induced signaling protein-2) plays an important role in maintenance of the differentiated phenotype of estrogen receptor-positive breast cancer cells and loss of WISP2 is associated with EMT. We now report that loss of WISP2 in MCF7 breast cancer cells can also promote the emergence of a cancer stem-like cell phenotype characterized by high expression of CD44, increased aldehyde dehydrogenase activity and mammosphere formation.

View Article and Find Full Text PDF

Background: Ligand-dependent activation of the estrogen receptor (ER) as well as of the insulin-like growth factor type 1 (IGF1R) induces the proliferation of luminal breast cancer cells. These two pathways cooperate and are interdependent. We addressed the question of the mechanisms of crosstalk between the ER and IGF1R.

View Article and Find Full Text PDF

CCN5 (cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed 5)/WISP-2 [WNT1 (wingless-type MMTV integration site family, member 1)-inducible signalling pathway protein 2] is an oestrogen-regulated member of the CCN family. CCN5 is a transcriptional repressor of genes associated with the EMT (epithelial-mesenchymal transition) and plays an important role in maintenance of the differentiated phenotype in ER (oestrogen receptor)-positive breast cancer cells. In contrast, CCN5 is undetectable in more aggressive ER-negative breast cancer cells.

View Article and Find Full Text PDF

CCN5 is a member of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family and was identified as an estrogen-inducible gene in estrogen receptor-positive cell lines. However, the role of CCN5 in breast carcinogenesis remains unclear. We report here that the CCN5 protein is localized mostly in the cytoplasm and in part in the nucleus of human tumor breast tissue.

View Article and Find Full Text PDF

A majority of breast cancers (BC) display characteristics of epithelial cells and express estrogen receptors and/or HER-2 (a member of the epidermal growth factor receptor family). About one-fifth of BC is constituted of basal cells for which there is no specific category of proliferation regulators. Insulin-like growth factor (IGF) signaling is involved in most BC cells, irrespective of cell type.

View Article and Find Full Text PDF

The mechanisms involved in the epithelial to mesenchymal transition (EMT) are integrated in concert with master developmental and oncogenic pathways regulating in tumor growth, angiogenesis, metastasis, as well as the reprogrammation of specific gene repertoires ascribed to both epithelial and mesenchymal cells. Consequently, it is not unexpected that EMT has profound impacts on the neoplastic progression, patient survival, as well as the resistance of cancers to therapeutics (taxol, vincristine, oxaliplatin, EGF-R targeted therapy and radiotherapy), independent of the "classical" resistance mechanisms linked to genotoxic drugs. New therapeutic combinations using genotoxic agents and/or EMT signaling inhibitors are therefore expected to circumvent the chemotherapeutic resistance of cancers characterized by transient or sustained EMT signatures.

View Article and Find Full Text PDF

Reduction of epithelial cell-cell adhesion via the transcriptional repression of cadherins in combination with the acquisition of mesenchymal properties are key determinants of epithelial-mesenchymal transition (EMT). EMT is associated with early stages of carcinogenesis, cancer invasion and recurrence. Furthermore, the tumor stroma dictates EMT through intensive bidirectional communication.

View Article and Find Full Text PDF

WISP-2/CCN5 is an estrogen-regulated member of the "connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed" (CCN) family of the cell growth and differentiation regulators. The WISP-2/CCN5 mRNA transcript is undetectable in normal human mammary cells, as well as in highly aggressive breast cancer cell lines, in contrast with its higher level in the breast cancer cell lines characterized by a more differentiated phenotype. We report here that knockdown of WISP-2/CCN5 by RNA interference in estrogen receptor alpha (ERalpha)-positive MCF-7 breast cancer cells induced an estradiol-independent growth linked to a loss of ERalpha expression and promoted epithelial-to-mesenchymal transdifferentiation.

View Article and Find Full Text PDF

Wnt-1-induced signalling pathway protein-2 (WISP-2)/connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN)5 is a member of the CCN family of growth factors and was identified as an oestrogen- inducible gene in the MCF-7 cell line. However, the role of WISP-2/CCN5 in breast carcinogenesis remains unclear. In this study, we examined the mechanism by which oestrogens regulate the expression of human (h) Wnt-1 induced signalling pathway protein (WISP-2)/CCN5.

View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDIs) induced expression of the B-ind1 protein that is a component of Rac-1-signaling pathways leading to the modulation of gene expression. In the present study, we have determined the structure of the human B-ind1 gene promoter region. The oligocapping method revealed that the transcriptional start site of the human B-ind1 gene is located at 166 bases upstream of the first adenine residue of the translation start site that is highly homologous to an initiator (Inr) consensus sequence.

View Article and Find Full Text PDF

Lung epithelium in cystic fibrosis (CF) patients is characterized by structural damage and altered repair due to oxidative stress. To gain insight into the oxidative stress-related damage in CF, we studied the effects of hyperoxia in CF and normal lung epithelial cell lines. In response to a 95% O2 exposure, both cell lines exhibited increased reactive oxygen species.

View Article and Find Full Text PDF

Estrogen receptors (ER) are ligand-dependent transcription factors that regulate growth, differentiation, and maintenance of cellular functions in a wide variety of tissues. We report here that p21WAF1/CIP1, a cyclin-dependent kinase (Cdk) inhibitor, cooperates with CBP to regulate the ERalpha-mediated transcription of endogenous target genes in a promoter-specific manner. The estrogen-induced expression of the progesterone receptor and WISP-2 mRNA transcripts in MCF-7 cells was enhanced by p21WAF1/CIP1, whereas that of the cyclin D1 mRNA was reduced and the pS2 mRNA was not affected.

View Article and Find Full Text PDF

Signal transducer and activator of transcription (STAT) 3 is overexpressed or activated in most types of human tumors and has been classified as an oncogene. In the present study, we investigated the contribution of the STAT3s to the proinvasive activity of trefoil factors (TFF) and vascular endothelial growth factor (VEGF) in human colorectal cancer cells HCT8/S11 expressing VEGF receptors. Both intestinal trefoil peptide (TFF3) and VEGF, but not pS2 (TFF1), activate STAT3 signaling through Tyr(705) phosphorylation of both STAT3alpha and STAT3beta isoforms.

View Article and Find Full Text PDF

In human immunodeficiency virus type 1 (HIV-1)-infected cells, a cell cycle arrest in G(2) increases viral expression and may represent a strategy for the virus to optimize its expression. In latently infected cells, balance between viral silencing and reactivation relies on the nucleosomal organization of the integrated long terminal repeat (LTR). It is shown here that nucleosome nuc-1, which is located downstream of the TATA box, is specifically modified when latently infected cells are arrested in G(2) by chemical inducers.

View Article and Find Full Text PDF

We have addressed the question of rapid, nongenomic mechanisms that may be involved in the mitogenic action of estrogens in hormone-dependent breast cancer cells. In quiescent, estrogen-deprived MCF-7 cells, estradiol did not induce a rapid activation of either the MAPK/ERK or phosphatidylinositol-3 kinase (PI-3K)/Akt pathway, whereas the entry into the cell cycle was documented by the successive inductions of cyclin D1 expression, hyperphosphorylation of the retinoblastoma protein (Rb), activity of the promoter of the cyclin A gene, and DNA synthesis. However, pharmacological inhibitors of the src family kinases, 4-amino-5-(4-methylphenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP1) or of the PI-3K (LY294002) did prevent the entry of the cells into the cell cycle and inhibited the late G1 phase progression, whereas the inhibitor of MAPK/ERK activation (U0126) had only a partial inhibitory effect in the early G1 phase.

View Article and Find Full Text PDF

The matrix metalloprotease matrilysin is expressed in premalignant polyps and plays a key role in local invasion during the progression of digestive tumors. In the present work, we investigated the possible relationships between the activity of the mouse and human matrilysin promoters (Mp), endogenous matrilysin protein expression, and two early oncogenetic defects frequently observed in human colonic cancers, namely activation of the src oncogene and impairment of the Wnt/APC/beta-catenin pathway. Using transient transfection assays, we report here that src signaling and the HMG-box transcription factor LEF-1 act synergistically with the proximal (-61 to -67) AP-1 binding site to transactivate the Mp in premalignant and tumorigenic kidney and colonic epithelial cells, through beta-catenin- and axin-independent signaling pathways.

View Article and Find Full Text PDF

We have investigated the interaction between the expression of p21(WAF1/CIP1/SDI1), a stoichiometric inhibitor of Cdk, and the transcriptional activity of the oestrogen receptor alpha (ER(alpha). Transient transfection experiments demonstrated that the expression of p21(WAF1/CIP1/SDI1) amplified the transcriptional activation by ER(alpha). A dominant negative mutant of Cdk2 also enhanced the ER(alpha) transcriptional activity, indicating that the underlying mechanism relies on the inhibition of Cdk2 activity and cell cycle arrest.

View Article and Find Full Text PDF

We have studied the effects of purvalanol A on the cell cycle progression, proliferation and viability. In synchronized cells, purvalanol A induced a reversible arrest the progression in G1 and G2 phase of the cell cycle, but did not prevent the completion of DNA synthesis in S-phase cells. The specificity of action of the drug was supported by the selective inhibition of the phosphorylation of cyclin-dependent kinase (cdk) substrates such as Rb and cyclin E.

View Article and Find Full Text PDF

Sodium butyrate is a multifunctional agent known to inhibit cell proliferation and to induce differentiation by modulating transcription. We have performed differential display analysis to identify transcriptional targets of sodium butyrate in Balb/c BP-A31 mouse fibroblasts. A novel butyrate-induced transcript B-ind1 has been cloned by this approach.

View Article and Find Full Text PDF

Estrogens induce cell proliferation in target tissues by stimulating progression through the G(1) phase of the cell cycle. Induction of cyclin D1 expression is a critical feature of the mitogenic action of estrogen. We have determined a region between -96 and -29 in the cyclin D1 promoter that confers regulation by estrogens in the human mammary carcinoma cells MCF-7.

View Article and Find Full Text PDF

The action of oestrogen hormones is mediated through the oestrogen receptor (ER), a member of a large superfamily of nuclear receptors that function as ligand-activated transcription factors. Sequence-specific transcription factors, including the nuclear receptor superfamily, are thought to interact either directly or indirectly with general transcription factors to regulate transcription. Although numerous studies have focused on the identification of potential co-activators interacting with isolated trans-activation domains of ER, few have investigated the mechanisms by which ER transmits its signal to the basal transcription machinery.

View Article and Find Full Text PDF

We have designed a novel estrogen-responsive unit, overERE, which consists of two overlapping ERE separated by 5 bp (center-to-center). In gel retardation assays, this sequence forms a low-mobility complex that migrates like an estrogen receptor tetramer. The receptor-overERE complex was specific and was supershifted by anti-ER H222 antibodies.

View Article and Find Full Text PDF

In the mouse fibroblasts BP-A31 as well as in the human epidermoid carcinoma cells KB-3-1, both cyclin D1 mRNA and protein contents decreased rapidly during incubation with sodium butyrate. The decrease of cyclin D1 mRNA was not prevented by cycloheximide indicating that protein synthesis is not required for the inhibition of the expression of cyclin D1 gene by sodium butyrate. The 973 bp region upstream of the human cyclin D1 gene conferred inhibition of the expression of an indicator gene in transiently transfected cells.

View Article and Find Full Text PDF

The role of heat-shock protein 90 (hsp90) in the regulation of the oestrogen receptor (ER) function is less well understood than for other steroid-hormone receptors because hsp90 is not involved in the stabilization or induction of a high-affinity ligand-binding state of ER nor in the inhibition of receptor dimerization. Electrophoretic mobility-shift assays, using purified ER and hsp90, were employed to investigate directly the effect of hsp90 on the ability of ER to bind to the oestrogen-response element (ERE) from the vitellogenin A2 gene. Contrary to models in which hsp90 binds to and passively inactivates steroid-hormone receptors, our studies show that the binding of ER to ERE is inversely dependent on the relative concentration of hsp90.

View Article and Find Full Text PDF

Transcriptional regulation of the progesterone receptor gene involves induction by estrogens and down-regulation by progestins, retinoic acid, and AP-1 proteins. We have previously identified an intragenic (+698/+723) estrogen-responsive element present in the progesterone receptor gene, which binds the estradiol receptor and mediates estrogen and 4-OH tamoxifen induction. Progesterone receptor gene expression was equally stimulated by estradiol and 4-OH tamoxifen in the presence of a NH2 terminally deleted estrogen receptor mutant lacking activation function 1, suggesting that activation function 2 was the predominant activation domain.

View Article and Find Full Text PDF