SARS-CoV-2 pandemic is causing high morbidity and mortality burden worldwide with unprecedented strain on health care systems. To investigate the time course of the antibody response in relation to the outcome we performed a study in hospitalized COVID-19 patients. As comparison we also investigated the time course of the antibody response in SARS-CoV-2 asymptomatic subjects.
View Article and Find Full Text PDFTetrahydrobiopterin (BH4) is an essential cofactor for the aromatic amino acid hydroxylases, alkylglycerol monooxygenase, and nitric oxide synthases (NOS). Inborn errors of BH4 metabolism lead to severe insufficiency of brain monoamine neurotransmitters while augmentation of BH4 by supplementation or stimulation of its biosynthesis is thought to ameliorate endothelial NOS (eNOS) dysfunction, to protect from (cardio-) vascular disease and/or prevent obesity and development of the metabolic syndrome. We have previously reported that homozygous knock-out mice for the 6-pyruvolytetrahydropterin synthase (PTPS; Pts-ko/ko) mice with no BH4 biosynthesis die after birth.
View Article and Find Full Text PDFPhenylketonuria (PKU) is caused by hepatic phenylalanine hydroxylase (PAH) deficiency and is associated with systemic accumulation of phenylalanine (Phe). Previously we demonstrated correction of murine PKU after intravenous injection of a recombinant type 2 adeno-associated viral vector pseudotyped with type 8 capsid (rAAV2/8), which successfully directed hepatic transduction and Pah gene expression. Here, we report that liver PAH activity and phenylalanine clearance were also restored in PAH-deficient mice after simple intramuscular injection of either AAV2 pseudotype 1 (rAAV2/1) or rAAV2/8 vectors.
View Article and Find Full Text PDFPhenylketonuria (PKU) caused by phenylalanine hydroxylase (PAH) deficiency leads to toxic accumulation of phenylalanine (Phe). PAH is predominantly expressed in liver and its activity requires a supply of tetrahydrobiopterin (BH(4)) cofactor, but we propose that expression of a complete Phe hydroxylating system (PAH plus BH(4) synthetic enzymes) in skeletal muscle will lead to therapeutic reduction of blood Phe levels in Pah(enu2) mice, a model of human PKU. In order to test this hypothesis, we first developed transgenic Pah(enu2) mice that lack liver PAH activity but coexpress, in their skeletal muscle, PAH and guanosine triphosphate cyclohydrolase I (GTPCH).
View Article and Find Full Text PDFDexamethasone (Dex) is a potent and long-acting glucocorticoid in terms of anti-inflammatory activity without substantial sodium retaining effect. Here, we examine the ability of the 11beta-hydroxyglucocorticoids Dex and cortisol and their 11-keto forms 11-ketodexamethasone (11-ketoDex) and cortisone to bind to glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) and to mediate nuclear translocation and transactivation of a reporter-gene. Unlike cortisone, the 11-ketosteroid 11-ketoDex acts as a potent GR agonist, comparable to Dex and cortisol.
View Article and Find Full Text PDFWe previously introduced a method called steroid-mediated gene delivery (SMGD), which uses steroid receptors as shuttles to facilitate the nuclear uptake of transfected DNA. Here, we describe a SMGD strategy with peptide nucleic acids (PNAs) that allowed linkage of a steroid molecule to a defined position in a plasmid without disturbing its gene expression. We synthesized and tested several bifunctional steroid derivatives [patent in process of nationalization] and finally selected the compound named DEX-bisPNA, a molecule consisting of a dexamethasone moiety linked to a PNA clamp (bisPNA) through a 30-atom chemical spacer.
View Article and Find Full Text PDFNat Biotechnol
December 2001
The incorporation of transgenes into the host cells' nuclei is problematic using conventional nonviral gene delivery technologies. Here we describe a strategy called steroid-mediated gene delivery (SMGD), which uses steroid receptors as shuttles to facilitate the uptake of transfected DNA into the nucleus. We use glucocorticoid receptors (GRs) as a model system with which to test the principle of SMGD.
View Article and Find Full Text PDFDNA uptake can be facilitated by addition of physiological amounts of 11beta-hydroxy glucocorticosteroids (such as cortisol) during transfection. In the presence of cortisol, but not of the inactive 11-keto glucocorticoid cortisone, twice as many cells uptake and express the reporter gene. The effect is specific and dose-dependent; the amounts of glucocorticosteroids needed to enhance transfection efficiency are in the nanomolar range, which corresponds to the dissociation constant of glucocorticoids for the glucocorticoid receptor in vitro.
View Article and Find Full Text PDFThe present paper briefly outlines the pathogenesis of cleft palate and proposes a classification system for cleft palate since both are considered essential for the understanding and assessment of its sequelae. The Authors describe one case of cleft palate. Cleft palate patients present functional and aesthetic alterations in the maxillomandibular area that often require prosthetic correction.
View Article and Find Full Text PDF