Publications by authors named "Rebowski G"

Gelsolin is the prototypical member of a family of Ca-activated F-actin severing and capping proteins. Here we report structures of Ca-bound human gelsolin at the barbed end of F-actin. One structure reveals gelsolin's six domains (G1G6) and interdomain linkers wrapping around F-actin, while another shows domains G1G3-a fragment observed during apoptosis-binding on both sides of F-actin.

View Article and Find Full Text PDF

Gelsolin is the prototypical member of a family of Ca -dependent F-actin severing and capping proteins. A structure of Ca -bound full-length gelsolin at the barbed end shows domains G1G6 and the inter-domain linkers wrapping around F-actin. Another structure shows domains G1G3, a fragment produced during apoptosis, on both sides of F-actin.

View Article and Find Full Text PDF

Class I myosins (myosin-Is) colocalize with Arp2/3 complex-nucleated actin networks at sites of membrane protrusion and invagination, but the mechanisms by which myosin-I motor activity coordinates with branched actin assembly to generate force are unknown. We mimicked the interplay of these proteins using the "comet tail" bead motility assay, where branched actin networks are nucleated by the Arp2/3 complex on the surface of beads coated with myosin-I and nucleation-promoting factor. We observed that myosin-I increased bead movement efficiency by thinning actin networks without affecting growth rates.

View Article and Find Full Text PDF

Myosin-Is colocalize with Arp2/3 complex-nucleated actin networks at sites of membrane protrusion and invagination, but the mechanisms by which myosin-I motor activity coordinates with branched actin assembly to generate force are unknown. We mimicked the interplay of these proteins using the "comet tail" bead motility assay, where branched actin networks are nucleated by Arp2/3 complex on the surface of beads coated with myosin-I and the WCA domain of N-WASP. We observed that myosin-I increased bead movement efficiency by thinning actin networks without affecting growth rates.

View Article and Find Full Text PDF

Cortactin coactivates Arp2/3 complex synergistically with WASP-family nucleation-promoting factors (NPFs) and stabilizes branched networks by linking Arp2/3 complex to F-actin. It is poorly understood how cortactin performs these functions. We describe the 2.

View Article and Find Full Text PDF

Arp2/3 complex generates branched actin networks that drive fundamental processes such as cell motility and cytokinesis. The complex comprises seven proteins, including actin-related proteins (Arps) 2 and 3 and five scaffolding proteins (ArpC1-ArpC5) that mediate interactions with a pre-existing (mother) actin filament at the branch junction. Arp2/3 complex exists in two main conformations, inactive with the Arps interacting end-to-end and active with the Arps interacting side-by-side like subunits of the short-pitch helix of the actin filament.

View Article and Find Full Text PDF

The barbed and pointed ends of the actin filament (F-actin) are the sites of growth and shrinkage and the targets of capping proteins that block subunit exchange, including CapZ at the barbed end and tropomodulin at the pointed end. We describe cryo-electron microscopy structures of the free and capped ends of F-actin. Terminal subunits at the free barbed end adopt a "flat" F-actin conformation.

View Article and Find Full Text PDF

Spotted fever group Rickettsia undergo actin-based motility inside infected eukaryotic cells using Sca2 (surface cell antigen 2): an ∼ 1800 amino-acid monomeric autotransporter protein that is surface-attached to the bacterium and responsible for the assembly of long unbranched actin tails. Sca2 is the only known functional mimic of eukaryotic formins, yet it shares no sequence similarities to the latter. Using structural and biochemical approaches we have previously shown that Sca2 uses a novel actin assembly mechanism.

View Article and Find Full Text PDF

Myosin-19 (Myo19) controls the size, morphology, and distribution of mitochondria, but the underlying role of Myo19 motor activity is unknown. Complicating mechanistic in vitro studies, the identity of the light chains (LCs) of Myo19 remains unsettled. Here, we show by coimmunoprecipitation, reconstitution, and proteomics that the three IQ motifs of human Myo19 expressed in Expi293 human cells bind regulatory light chain (RLC12B) and calmodulin (CaM).

View Article and Find Full Text PDF

Actin is the most abundant protein in the cytoplasm of eukaryotic cells and interacts with hundreds of proteins to perform essential functions, including cell motility and cytokinesis. Numerous diseases are caused by mutations in actin, but studying the biochemistry of actin mutants is difficult without a reliable method to obtain recombinant actin. Moreover, biochemical studies have typically used tissue-purified α-actin, whereas humans express six isoforms that are nearly identical but perform specialized functions and are difficult to obtain in isolation from natural sources.

View Article and Find Full Text PDF

Positive feedback loops involving signaling and actin assembly factors mediate the formation and remodeling of branched actin networks in processes ranging from cell and organelle motility to mechanosensation. The Arp2/3 complex inhibitor Arpin controls the directional persistence of cell migration by interrupting a feedback loop involving Rac-WAVE-Arp2/3 complex, but Arpin's mechanism of inhibition is unknown. Here, we describe the cryo-EM structure of Arpin bound to Arp2/3 complex at 3.

View Article and Find Full Text PDF

Actin-related protein (Arp) 2/3 complex nucleates branched actin networks that drive cell motility. It consists of seven proteins, including two actin-related subunits (Arp2 and Arp3). Two nucleation-promoting factors (NPFs) bind Arp2/3 complex during activation, but the order, specific interactions, and contribution of each NPF to activation are unresolved.

View Article and Find Full Text PDF

About 80% of human proteins are amino-terminally acetylated (Nt-acetylated) by one of seven Nt-acetyltransferases (NATs). Actin, the most abundant protein in the cytoplasm, has its own dedicated NAT, NAA80, which acts posttranslationally and affects cytoskeleton assembly and cell motility. Here, we show that NAA80 does not associate with filamentous actin in cells, and its natural substrate is the monomeric actin-profilin complex, consistent with Nt-acetylation preceding polymerization.

View Article and Find Full Text PDF

Actin, one of the most abundant proteins in nature, participates in countless cellular functions ranging from organelle trafficking and pathogen motility to cell migration and regulation of gene transcription. Actin's cellular activities depend on the dynamic transition between its monomeric and filamentous forms, a process exquisitely regulated in cells by a large number of actin-binding and signaling proteins. Additionally, several posttranslational modifications control the cellular functions of actin, including most notably N-terminal (Nt)-acetylation, a prevalent modification throughout the animal kingdom.

View Article and Find Full Text PDF

Leiomodins (Lmods) are a family of actin filament nucleators related to tropomodulins (Tmods), which are pointed end-capping proteins. Whereas Tmods have alternating tropomyosin- and actin-binding sites (TMBS1, ABS1, TMBS2, ABS2), Lmods lack TMBS2 and half of ABS1, and present a C-terminal extension containing a proline-rich domain and an actin-binding Wiskott-Aldrich syndrome protein homology 2 (WH2) domain that is absent in Tmods. Most of the nucleation activity of Lmods resides within a fragment encompassing ABS2 and the C-terminal extension.

View Article and Find Full Text PDF

How proteins sharing a common fold have evolved different functions is a fundamental question in biology. Tropomodulins (Tmods) are prototypical actin filament pointed-end-capping proteins, whereas their homologues, Leiomodins (Lmods), are powerful filament nucleators. We show that Tmods and Lmods do not compete biochemically, and display similar but distinct localization in sarcomeres.

View Article and Find Full Text PDF

PICK1 is a modular scaffold implicated in synaptic receptor trafficking. It features a PDZ domain, a BAR domain, and an acidic C-terminal tail (ACT). Analysis by small- angle x-ray scattering suggests a structural model that places the receptor-binding site of the PDZ domain and membrane-binding surfaces of the BAR and PDZ domains adjacent to each other on the concave side of the banana-shaped PICK1 dimer.

View Article and Find Full Text PDF

Actin filament nucleation and branching by Arp2/3 complex is activated by nucleation-promoting factors (NPFs), whose C-terminal WCA region contains binding sites for actin (W) and Arp2/3 complex (CA). It is debated whether one or two NPFs are required for activation. Here we present evidence in support of the two-NPF model and show that actin plays a crucial role in the interactions of two mammalian NPFs, N-WASP and WAVE2, with Arp2/3 complex.

View Article and Find Full Text PDF

Glia maturation factor (GMF) is a member of the actin-depolymerizing factor (ADF)/cofilin family. ADF/cofilin promotes disassembly of aged actin filaments, whereas GMF interacts specifically with Arp2/3 complex at branch junctions and promotes debranching. A distinguishing feature of ADF/cofilin is that it binds tighter to ADP-bound than to ATP-bound monomeric or filamentous actin.

View Article and Find Full Text PDF

Actin is a highly ubiquitous protein in eukaryotic cells that plays a crucial role in cell mechanics and motility. Cell motility is driven by assembling actin as polymerizing actin drives cell protrusions in a process closely involving a host of other actin-binding proteins, notably the actin-related protein 2/3 (Arp2/3) complex, which nucleates actin and forms branched filamentous structures. The Arp2/3 complex preferentially binds specific actin networks at the cell leading edge and forms branched filamentous structures, which drive cell protrusions, but the exact regulatory mechanism behind this process is not well understood.

View Article and Find Full Text PDF

Pathogen proteins targeting the actin cytoskeleton often serve as model systems to understand their more complex eukaryotic analogs. We show that the strong actin filament nucleation activity of Vibrio parahaemolyticus VopL depends on its three W domains and on its dimerization through a unique VopL C-terminal domain (VCD). The VCD shows a previously unknown all-helical fold and interacts with the pointed end of the actin nucleus, contributing to the nucleation activity directly and through duplication of the W domain repeat.

View Article and Find Full Text PDF

Bin/amphipysin/Rvs (BAR)-domain proteins sculpt cellular membranes and have key roles in processes such as endocytosis, cell motility and morphogenesis. BAR domains are divided into three subfamilies: BAR- and F-BAR-domain proteins generate positive membrane curvature and stabilize cellular invaginations, whereas I-BAR-domain proteins induce negative curvature and stabilize protrusions. We show that a previously uncharacterized member of the I-BAR subfamily, Pinkbar, is specifically expressed in intestinal epithelial cells, where it localizes to Rab13-positive vesicles and to the plasma membrane at intercellular junctions.

View Article and Find Full Text PDF

Fascin is the main actin filament bundling protein in filopodia. Because of the important role filopodia play in cell migration, fascin is emerging as a major target for cancer drug discovery. However, an understanding of the mechanism of bundle formation by fascin is critically lacking.

View Article and Find Full Text PDF

Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin β4.

View Article and Find Full Text PDF