Nanomaterials (Basel)
June 2024
Zinc oxide (ZnO) is a wide bandgap semiconductor that holds significant potential for various applications. However, most of the native point defects in ZnO like Zn interstitials typically cause an n-type conductivity. Consequently, achieving p-type doping in ZnO is challenging but crucial for comprehensive applications in the field of optoelectronics.
View Article and Find Full Text PDFPhotonic integrated circuits require photodetectors that operate at room temperature with sensitivity at telecom wavelengths and are suitable for integration with planar complementary-metal-oxide-semiconductor (CMOS) technology. Silicon hyperdoped with deep-level impurities is a promising material for silicon infrared detectors because of its strong room-temperature photoresponse in the short-wavelength infrared region caused by the creation of an impurity band within the silicon band gap. In this work, we present the first experimental demonstration of lateral Te-hyperdoped Si PIN photodetectors operating at room temperature in the optical telecom bands.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2023
B20-CoSi is a newly discovered Weyl semimetal that crystallizes into a noncentrosymmetric crystal structure. However, the investigation of B20-CoSi has so far been focused on bulk materials, whereas the growth of thin films on technology-relevant substrates is a prerequisite for most practical applications. In this study, we have used millisecond-range flash-lamp annealing, a nonequilibrium solid-state reaction, to grow B20-CoSi thin films.
View Article and Find Full Text PDFWe investigate the coherent coupling of metamaterial resonators with hydrogen-like boron acceptors in Si at cryogenic temperatures. When the resonance frequency of the metamaterial, chosen to be in the range 7-9 THz, superimposes the transition frequency from the ground state of the acceptor to an excited state, Rabi splitting as large as 0.4 THz is observed.
View Article and Find Full Text PDFB20-type MnSi is the prototype magnetic skyrmion material. Thin films of MnSi show a higher Curie temperature than their bulk counterpart. However, it is not yet clear what mechanism leads to the increase of the Curie temperature.
View Article and Find Full Text PDFFor millennia, ceramics have been densified sintering in a furnace, a time-consuming and energy-intensive process. The need to minimize environmental impact calls for new physical concepts beyond large kilns relying on thermal radiation and insulation. Here, we realize ultrarapid heating with intense blue and UV-light.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
Two-dimensional (2D) van der Waals materials with broadband optical absorption are promising candidates for next-generation UV-vis-NIR photodetectors. FePS, one of the emerging antiferromagnetic van der Waals materials with a wide bandgap and p-type conductivity, has been reported as an excellent candidate for UV optoelectronics. However, a high sensitivity photodetector with a self-driven mode based on FePS has not yet been realized.
View Article and Find Full Text PDFPlasmonic sensing in the infrared region employs the direct interaction of the vibrational fingerprints of molecules with the plasmonic resonances, creating surface-enhanced sensing platforms that are superior to traditional spectroscopy. However, the standard noble metals used for plasmonic resonances suffer from high radiative losses as well as fabrication challenges, such as tuning the spectral resonance positions into mid- to far-infrared regions, and the compatibility issue with the existing complementary metal-oxide-semiconductor (CMOS) manufacturing platform. Here, we demonstrate the occurrence of mid-infrared localized surface plasmon resonances (LSPR) in thin Si films hyperdoped with the known deep-level impurity tellurium.
View Article and Find Full Text PDFAmong other new device concepts, nickel silicide (NiSi)-based Schottky barrier nanowire transistors are projected to supplement down-scaling of the complementary metal-oxide semiconductor (CMOS) technology as its physical limits are reached. Control over the NiSi phase and its intrusions into the nanowire is essential for superior performance and down-scaling of these devices. Several works have shown control over the phase, but control over the intrusion lengths has remained a challenge.
View Article and Find Full Text PDFThe fabrication of individual nanowire-based devices and their comprehensive electrical characterization remains a major challenge. Here, we present a symmetric Hall bar configuration for highly p-type germanium nanowires (GeNWs), fabricated by a top-down approach using electron beam lithography and inductively coupled plasma reactive ion etching. The configuration allows two equivalent measurement sets to check the homogeneity of GeNWs in terms of resistivity and the Hall coefficient.
View Article and Find Full Text PDFUsing two different types of impedance biochips (PS5 and BS5) with ring top electrodes, a distinct change of measured impedance has been detected after adding 1-5 µL (with dead or live Gram-positive JG-A12 cells to 20 µL DI water inside the ring top electrode. We relate observed change of measured impedance to change of membrane potential of JG-A12 cells. In contrast to impedance measurements, optical density (OD) measurements cannot be used to distinguish between dead and live cells.
View Article and Find Full Text PDFWe counted bacterial cells of strain K12 in several-microliter DI water or in several-microliter PBS in the low optical density (OD) range (OD = 0.05-1.08) in contact with the surface of Si-based impedance biochips with ring electrodes by impedance measurements.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2020
The nickel monogermanide (NiGe) phase is known for its electrical properties such as low ohmic and low contact resistance in group-IV-based electronics. In this work, thin films of nickel germanides (Ni-Ge) were formed by magnetron sputtering followed by flash lamp annealing (FLA). The formation of NiGe was investigated on three types of substrates: on amorphous (a-Ge) as well as polycrystalline Ge (poly-Ge) and on monocrystalline (100)-Ge (c-Ge) wafers.
View Article and Find Full Text PDFA method for cross-sectional doping of individual Si/SiO core/shell nanowires (NWs) is presented. P and B atoms are laterally implanted at different depths in the Si core. The healing of the implantation-related damage together with the electrical activation of the dopants takes place via solid phase epitaxy driven by millisecond-range flash lamp annealing.
View Article and Find Full Text PDFHyperdoped silicon with deep level impurities has attracted much research interest due to its promising optical and electrical properties. In this work, single crystalline silicon supersaturated with titanium is fabricated by ion implantation followed by both pulsed laser melting and flash lamp annealing. The decrease of sheet resistance with increasing Ti concentration is attributed to a surface morphology effect due to the formation of cellular breakdown at the surface and the percolation conduction at high Ti concentration is responsible for the metallic-like conductivity.
View Article and Find Full Text PDFThe optoelectronic applications of Si are restricted to the visible and near-infrared spectral range due to its 1.12 eV-indirect band gap. Sub-band gap light detection in Si, for instance, has been a long-standing scientific challenge for many decades since most photons with sub-band gap energies pass through Si unabsorbed.
View Article and Find Full Text PDFA key milestone for the next generation of high-performance multifunctional microelectronic devices is the monolithic integration of high-mobility materials with Si technology. The use of Ge instead of Si as a basic material in nanoelectronics would need homogeneous p- and n-type doping with high carrier densities. Here we use ion implantation followed by rear side flash-lamp annealing (r-FLA) for the fabrication of heavily doped n-type Ge with high mobility.
View Article and Find Full Text PDFGold surfaces functionalized with nickel-nitrilotriacetic acid (Ni²⁺-NTA) as self-assembled monolayers (SAM) to immobilize histidine (His)-tagged biomolecules are broadly reported in the literature. However, the increasing demand of using microfluidic systems and biosensors takes more and more advantage on silicon technology which provides dedicated glass surfaces and substantially allows cost and resource savings. Here we present a novel method for the controlled oriented immobilization of His-tagged proteins on glass surfaces functionalized with a Ni²⁺-NTA layer.
View Article and Find Full Text PDFInAs with an extremely high electron mobility (up to 40,000 cm(2)/V s) seems to be the most suitable candidate for better electronic devices performance. Here we present a synthesis of inverted crystalline InAs nanopyramids (NPs) in silicon using a combined hot ion implantation and millisecond flash lamp annealing techniques. Conventional selective etching was used to form the InAs/Si heterojunction.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2011
We investigated the immobilization of the estrogen receptor hER(α) on silanized SiO(2) surfaces for biosensor applications. The conjugation of the estrogen receptor hER(α) to the quantum dot dye QD655 was achieved. In order to obtain an optimal immobilization of the estrogen receptor hER(α) on the functionalized SiO(2) surface, the bioconjugate hER(α)-QD655 (Rcpt-qd655) solution was prepared with a higher molar ratio of 10-15 between the QDs and the receptors.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2009
A new silanization method for SiO(2) surfaces has been developed for Si-based light emitters which are intended to serve as light sources in smart biosensors relying on fluorescence analysis. This method uses a special silanization chamber and is based on spraying and spin coating (SSC) in nitrogen atmosphere at room temperature for 10 min. It avoids processes like sonication and the use of certain chemicals being harmful to integrated light emitters.
View Article and Find Full Text PDF