Publications by authors named "Rebmann V"

HLA-G, an important immune-checkpoint (IC) molecule that exerts inhibitory signalling on immune effector cells, has been suggested to represent a key player in regulating the immune response to Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2). Since specific single-nucleotide polymorphisms (SNP) in the HLA-G 3'untranslated region (UTR), which arrange as haplotypes, are crucial for the regulation of HLA-G expression, we analysed the contribution of these genetic variants as host factors in SARS-CoV-2 infection during acute and post-acute phases. HLA-G gene polymorphisms in the 3'UTR were investigated by sequencing in an unvaccinated Coronavirus Disease 2019 (COVID-19) cohort during acute SARS-CoV-2 infection (N = 505) and in the post-acute phase (N = 253).

View Article and Find Full Text PDF

Hematopoietic cell transplantation (HCT) represents a potentially curative therapeutic approach for various hematologic and non-hematologic malignancies. Human leukocyte antigen (HLA) matching is still the central selection criterion for HCT donors. Nevertheless, post-transplant complications, in particular graft-versus-host disease (GvHD), relapse of disease and infectious complications, represent a major challenge and contribute significantly to morbidity and mortality.

View Article and Find Full Text PDF
Article Synopsis
  • Triple negative breast cancer (TNBC) is aggressive and has few treatment options, highlighting the need for markers to identify high-risk patients and potential new therapies.
  • Researchers studied sHLA-G plasma levels and ILT-2 gene variations in TNBC patients and healthy controls to assess their correlation with disease outcomes and circulating tumor cell (CTC) subtypes.
  • Elevated post-chemotherapy sHLA-G levels were linked to worse outcomes, while the ILT-2 genetic variant was associated with poor disease progression, suggesting that combining these factors could better predict TNBC prognosis than traditional methods.
View Article and Find Full Text PDF

The immunosuppressive non-classical human leukocyte antigen-G (HLA-G) can elicits pro-viral activities by down-modulating immune responses. We analysed soluble forms of HLA-G, IL-6 and IL-10 as well as on immune effector cell expression of HLA-G and its cognate ILT-2 receptor in peripheral blood obtained from hospitalised and convalescent COVID-19 patients. Compared with convalescents (N = 202), circulating soluble HLA-G levels (total and vesicular-bound molecules) were significantly increased in hospitalised patients (N = 93) irrespective of the disease severity.

View Article and Find Full Text PDF

Albeit several factors which influence the outcome of corona virus disease (COVID-19) are already known, genetic markers which may predict the outcome of the disease in hospitalized patients are still very sparse. Thus, in this study, we aimed to analyze whether the single-nucleotide polymorphism (SNP) rs5443 in the gene , which was associated with higher T cell responses in previous studies, might be a suitable biomarker to predict T cell responses and the outcome of COVID-19 in a comprehensive German cohort. We analyzed the influence of demographics, pre-existing disorders, laboratory parameters at the time of hospitalization, and rs5443 genotype in a comprehensive cohort (N = 1570) on the outcome of COVID-19.

View Article and Find Full Text PDF

The human leukocyte antigen G (HLA-G) is an immune checkpoint molecule with a complex network of interactions with several inhibitory receptors. Although the effect of HLA-G on T cells and NK cells is well studied, the effect of HLA-G on B cells is still largely elusive. B cells are of particular interest in the context of the HLA-G-ILT-2 interaction because the ILT-2 receptor is constitutively expressed on most B cells, whereas it is only present on some subsets of T and NK cells.

View Article and Find Full Text PDF

Purpose: Based on the tumor-promoting features of extracellular vesicles (EV) and PD-L1/2-bearing EV subpopulations (PD-L1/2), we evaluated their potential as surrogate markers for disease progression or eligibility criteria for PD-1 immune checkpoint inhibition (ICI) approaches in early triple-negative breast cancer (TNBC).

Methods: After enrichment of EV from plasma samples of 56 patients before and 50 after chemotherapy (CT), we determined levels of EV particle number and PD-L1/2 by nanoparticle tracking analysis or ELISA and associated the results with clinical status/outcome and the presence of distinct circulating tumor cells (CTC) subpopulations.

Results: Compared to healthy controls, patients had a tenfold higher EV concentration and significantly elevated PD L2 but not PD L1 levels.

View Article and Find Full Text PDF

Despite major improvements in diagnostics and therapy in early as well as in locally advanced breast cancer (LABC), metastatic relapse occurs in about 20% of patients, often explained by early micro-metastatic spread into bone marrow by disseminated tumor cells (DTC). Although neoadjuvant chemotherapy (NACT) has been a successful tool to improve overall survival (OS), there is growing evidence that various environmental factors like the non-classical human leukocyte antigen-G (HLA-G) promotes cancer invasiveness and metastatic progression. HLA-G expression is associated with regulatory elements targeting certain single-nucleotide polymorphisms (SNP) in the 3' untranslated region (UTR), which arrange as haplotypes.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the greatest medical challenge. Although crucial to the future management of the pandemic, the factors affecting the persistence of long-term SARS-CoV-2 immunity are not well understood. Therefore, we determined the extent of important correlates of SARS-CoV-2 specific protection in 200 unvaccinated convalescents after COVID-19.

View Article and Find Full Text PDF

Programmed cell death protein-1 (PD-1) is an inhibitory co-receptor required for regulating immune responsiveness and maintaining immune homeostasis. As PD-1 can be released as bioactive soluble molecule, we investigated the clinical significance of soluble PD-1 (sPD-1) after allogeneic hematopoietic stem cell transplantation (HSCT) regarding graft-versus-host disease (GvHD), relapse, and overall survival (OS) in a mono-centric cohort of 82 patients. Compared to pre-HSCT and to healthy controls, post-HSCT sPD-1 plasma levels were significantly increased during an observation time of three months.

View Article and Find Full Text PDF

Aggressive B-cell lymphomas account for the majority of non-Hodgkin lymphomas (B-NHL). NK cells govern the responses to anti-CD20 monoclonal antibodies and have emerged as attractive targets for immunotherapy in subtypes of B-NHL. NKG2C and its cognate ligand HLA-E represent key molecules for fine-tuning of NK cell-mediated immune responses.

View Article and Find Full Text PDF

Tumor immune escape is associated with both, the expression of immune checkpoint molecules on peripheral immune cells and soluble forms of the human leukocyte antigen-G (HLA-G) in the blood, which are consequently discussed as clinical biomarker for disease status and outcome of cancer patients. HLA-G preferentially interacts with the inhibitory receptor immunoglobulin-like transcript (ILT) receptor-2 in the blood and can be secreted as free soluble molecules (sHLA-G) or via extracellular vesicles (EV). To investigate the contribution of these two forms to the expression of checkpoint molecules in peripheral blood, we primed peripheral blood mononuclear cells with purified soluble sHLA-G1 protein, or EV preparations derived from SUM149 cells transfected with membrane-bound HLA-G1 or control vector prior to anti-CD3/CD28 T cell activation.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell efficacy against solid tumors is currently limited by several immune escape mechanisms, which may include tumor-derived extracellular vesicles. Advanced neuroblastoma is an aggressive childhood tumor without curative treatment options for most relapsed patients today. We here evaluated the role of tumor-derived extracellular vesicles on the efficacy of CAR T cells targeting the neuroblastoma-specific antigen, CD171.

View Article and Find Full Text PDF

HLA-G has been widely implicated in advanced cancers through different pathways of immunosuppression allowing tumor escape. Contrarily, HLA-E has a controversial role in the tumor escape from the immune system. IDO catabolic enzyme is known to be up-regulated in many tumors types allowing their immune escape.

View Article and Find Full Text PDF

HLA-E is a member of the non-classical HLA molecules and by interaction with activating or inhibitory receptors of NK and T cells, HLA-E can lead to immune activation or suppression context-dependently. Recently, the non-classical HLA molecules gain more attention in the setting of allogeneic hematopoietic stem cell transplantation (HSCT). Most studies so far have focused on the two most frequent genotypes (HLA-E*01:01 and HLA-E*01:03) and investigated their potential association with clinical endpoints of HSCT, like graft-versus-host disease (GvHD), relapse, and overall survival (OS).

View Article and Find Full Text PDF

Background: Programmed cell death protein 1 (PD-1) checkpoint inhibition has recently advanced to one of the most effective treatment strategies in melanoma. Nevertheless, a considerable proportion of patients show upfront therapy resistance and baseline predictive biomarkers of treatment outcome are scarce. In this study we quantified PD-1 and programmed death-ligand 1 (PD-L1) in baseline sera from melanoma patients in relation to therapy response and survival.

View Article and Find Full Text PDF

Response to platinum-based therapy is a major prognostic factor in epithelial ovarian cancer (EOC) and reliable prognostic biomarkers are urgently needed to identify patients at high risk. Since ligands of the Programmed Death Receptor-1 (PD-L1 and PD-L2) play a crucial role within the tumor microenvironment for tumorigenesis, we investigated levels of sPD-L1 and sPD-L2 in liquid biopsies of serum samples, and correlated the results with the clinical status, presence of circulating tumor cells (CTCs) and disease outcome in primary EOC patients. sPD-L1 and sPD-L2 were determined by ELISA in patients ( = 83) and healthy females ( = 29).

View Article and Find Full Text PDF

The immunosuppressive non-classical human leukocyte antigen-G (HLA-G) promotes transplant tolerance as well as viral immune escape. HLA-G expression is associated with regulatory elements targeting certain single nucleotide polymorphisms (SNPs) in the HLA-G 3' untranslated region (UTR). Thus, we evaluated the impact of HLA-G 3'UTR polymorphisms as surrogate markers for BK polyomavirus (BKPyV) replication or nephropathy (PyVAN) and acute cellular and antibody mediated rejection (ACR/AMR) in 251 living-donor kidney-transplant recipient pairs.

View Article and Find Full Text PDF

Human leukocyte antigen (HLA)-E is important for the regulation of anti-viral immunity. BK polyomavirus (BKPyV) reactivation after kidney transplant is a serious complication that can result in BKPyV-associated nephropathy (PyVAN) and subsequent allograft loss. To elucidate whether HLA-E polymorphisms influence BKPyV replication and nephropathy, we determined the HLA-E genotype of 278 living donor and recipient pairs.

View Article and Find Full Text PDF

Extracellular vesicles (EV) and their tumor-supporting cargos provide a promising translational potential in liquid biopsies for risk assessment of epithelial ovarian cancer (EOC) patients frequently relapsing, despite initial complete therapy responses. As the immune checkpoint molecule HLA-G, which is operative in immune-escape, can be released by EV, we evaluate the abundance of EV and its vesicular-bound amount of HLA-G (HLA-G) as a biomarker in EOC. After enrichment of EV from plasma samples, we determined the EV particle number and amount of HLA-G by nanoparticle tracking analysis or ELISA.

View Article and Find Full Text PDF

Background Exosomes are nanovesicles released by cells that can be detected in blood. Exosomes contain several molecules, such as cytokines that have potential utility as disease biomarkers. The aim of the present work is to compare six different commercial kits suitable for the clinical laboratory in relation to the efficiency and purity of exosome isolation, and their effect in subsequent cytokines analysis.

View Article and Find Full Text PDF

Treatment with extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have been suggested as novel therapeutic option in acute inflammation-associated disorders due to their immune-modulatory capacities. As we have previously observed differences in the cytokine profile of independent MSC-EV preparations, functional differences of MSC-EV preparations have to be considered. To evaluate the immune-modulatory capabilities of specific MSC-EV preparations, reliable assays are required to characterize the functionality of MSC-EV preparations prior to administration to a patient.

View Article and Find Full Text PDF

Expression of the non-classical human leukocyte antigen-G (HLA-G) promotes cancer progression in various malignancies including epithelial ovarian cancer (EOC). As single nucleotide polymorphisms (SNPs) in the HLA-G 3' untranslated region (UTR) regulate HLA-G expression, we investigated HLA-G 3'UTR haplotypes arranged by SNPs in healthy controls (n = 75) and primary EOC patients (n = 79) and determined soluble HLA-G (sHLA-G) levels. Results were related to the clinical status and outcome.

View Article and Find Full Text PDF