Publications by authors named "Rebekka Mauser"

UHRF1 is an essential chromatin protein required for DNA methylation maintenance, mammalian development, and gene regulation. We investigated the Tandem-Tudor domain (TTD) of human UHRF1 that is known to bind H3K9me2/3 histones and is a major driver of UHRF1 localization in cells. We verified binding to H3K9me2/3 but unexpectedly discovered stronger binding to H3 peptides and mononucleosomes containing K9me2/3 with additional K4me1.

View Article and Find Full Text PDF

Various post-translational modifications (PTMs) have been identified on histone proteins, which occur at hundreds of different sites. Histone PTMs influence the chromatin structure and serve as binding sites for reading domains, which further mediate downstream effects. Histone PTM antibodies or recombinant proteins derived from reading domains are unique research reagents essentially required to study histone modifications.

View Article and Find Full Text PDF

The N-terminal tails of histone proteins are massively decorated with post-translational modifications (PTMs), which play important roles in the regulation of gene expression. Several highly conserved chromatin interacting proteins can bind to histone modifications in a sequence and modification specific manner employing specific reading domains. These proteins often contain several reading domains, which can cooperate in the readout of different PTMs.

View Article and Find Full Text PDF

Current approaches have limitations in providing insight into the functional properties of particular nucleosomes in their native molecular environment. Here we describe a simple and powerful method involving elution of histones using intercalators or salt, to assess stability features dependent on DNA superhelicity and relying mainly on electrostatic interactions, respectively, and measurement of the fraction of histones remaining chromatin-bound in the individual nuclei using histone type- or posttranslational modification- (PTM-) specific antibodies and automated, quantitative imaging. The method has been validated in H3K4me3 ChIP-seq experiments, by the quantitative assessment of chromatin loop relaxation required for nucleosomal destabilization, and by comparative analyses of the intercalator and salt induced release from the nucleosomes of different histones.

View Article and Find Full Text PDF

Background: Histone post-translational modifications (PTMs) play central roles in chromatin-templated processes. Combinations of two or more histone PTMs form unique interfaces for readout and recruitment of chromatin interacting complexes, but the genome-wide mapping of coexisting histone PTMs remains an experimentally difficult task.

Results: We introduce here a novel type of affinity reagents consisting of two fused recombinant histone modification interacting domains (HiMIDs) for direct detection of doubly modified chromatin.

View Article and Find Full Text PDF

Background: Histone posttranslational modifications (PTMs) represent a focal point of chromatin regulation. The genome-wide and locus-specific distribution and the presence of distinct histone PTMs is most commonly examined with the application of histone PTM-specific antibodies. In spite of their central role in chromatin research, polyclonal antibodies suffer from disadvantages like batch-to-batch variability and insufficient documentation of their quality and specificity.

View Article and Find Full Text PDF

Histone post-translational modifications (PTMs) have pivotal functions in many chromatin processes, which makes their detection and characterization an imperative in chromatin biology. The established approaches for histone PTM characterization are generally based on affinity reagents specific for modified histone tails such as antibodies and, most recently, recombinant reading domains. Hence, the proper performance of these reagents is a critical precondition for the validity of the generated experimental data.

View Article and Find Full Text PDF

Histone posttranslational modifications (PTMs) have a crucial role in chromatin regulation and dynamics. They are specifically bound by so-called reading domains, which mediate the biological effects of histone PTMs. On a similar note, antibodies are invaluable reagents in chromatin biology for the detection, characterization, and mapping of histone PTMs.

View Article and Find Full Text PDF