Publications by authors named "Rebekka Bernard"

Intrinsic optical imaging (IOI) is a well established technique to quantify activation-related hemodynamical changes at the surface of the brain, which can be used to investigate the underlying processes of BOLD signal formation. To directly and quantitatively relate IOI and fMRI, simultaneous measurements with the two modalities are necessary. Here, a novel technical solution for a completely in-bore setup is presented, which uses only magnetic field proof components and thus allows concurrent recordings with a quality similar to that obtained in separate experiments.

View Article and Find Full Text PDF

Ultralow-field (ULF) nuclear magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are promising spectroscopy and imaging methods allowing for, e.g., the simultaneous detection of multiple nuclei or imaging in the vicinity of metals.

View Article and Find Full Text PDF

Simultaneous measurements of intra-cortical electrophysiology and hemodynamic signals in primates are essential for relating human neuroimaging studies with intra-cortical electrophysiology in monkeys. Previously, technically challenging and resourcefully demanding techniques such as fMRI and intrinsic-signal optical imaging have been used for such studies. Functional near-infrared spectroscopy is a relatively less cumbersome neuroimaging method that uses near-infrared light to detect small changes in concentrations of oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR) and total hemoglobin (HbT) in a volume of tissue with high specificity and temporal resolution.

View Article and Find Full Text PDF

Background: Sinus node dysfunction (SND) is a major clinically relevant disease that is associated with sudden cardiac death and requires surgical implantation of electric pacemaker devices. Frequently, SND occurs in heart failure and hypertension, conditions that lead to electric instability of the heart. Although the pathologies of acquired SND have been studied extensively, little is known about the molecular and cellular mechanisms that cause congenital SND.

View Article and Find Full Text PDF