Publications by authors named "Rebekah W Wu"

A previously unknown isomer of the carcinogenic heterocyclic aromatic amine (HAA) 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx) was recently discovered in the urine of meat eaters and subsequently detected in cooked ground beef (Holland, R.D., et al.

View Article and Find Full Text PDF

The understanding of mutagenic potency has been primarily approached using "quantitative structure-activity relationships" (QSAR). Often this method allows the prediction of mutagenic potency of the compound based on its structure. But it does not give the underlying reason why the mutagenic activities differ.

View Article and Find Full Text PDF

UDP-glucuronosyltransferase proteins (UGT) catalyze the glucuronidation of both endogenous and xenobiotic compounds. In previous studies, UGT1A1 has been implicated in the detoxification of certain food-borne carcinogenic-heterocyclic amines. To determine the importance of UDP-glucuronosyltransferase 1A1 (UGT1A1) in the biotransformation of the cooked-food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), genetically modified CHO cells that are nucleotide excision repair-deficient, and express cytochrome P4501A2 (UV5P3 cell line) were transfected with a cDNA plasmid of human UGT1A1 to establish the UDP-glucuronosyltransferase 1A1 expressing 5P3hUGT1A1 cell line.

View Article and Find Full Text PDF

In order to understand the role of repair and metabolism in the mutagenicity of heterocyclic amines from cooked foods, we previously developed the nucleotide excision repair-deficient CHO 5P3NAT2 cell line engineered to coexpress the mouse CYP1A2 and human N-acetyltransferase genes. In the present study, we have made a matched repair-competent cell line by mutagenizing 5P3NAT2 cells with ethyl methanesulfonate and selecting for resistance to cytotoxicity by 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). In the differential cytotoxicity (DC) assay, 4 out of 15 clones showed no cytotoxic effect with IQ at the highest dose (30 microg/ml) tested, in contrast to repair-deficient 5P3NAT2 cells, which showed approximately 100% cytotoxicity at 0.

View Article and Find Full Text PDF