Publications by authors named "Rebekah Ritchie"

Gastrin signaling mediated through cholecystokinin-2 receptor (CCK2R) and its downstream molecules is altered in pancreatic cancer. CCK2R antagonists, YF476 (netazepide) and JNJ-26070109, were tested systematically for their effect on pancreatic intraepithelial neoplasia (PanIN) progression to pancreatic ductal adenocarcinoma (PDAC) in Kras mice. After dose selection using wild-type mice, six-week-old p48 -LSL-Kras (22-24 per group) genetically engineered mice (GEM) were fed AIN-76A diets containing 0, 250, or 500 ppm JNJ-26070109 or YF-476 for 38 weeks.

View Article and Find Full Text PDF

Pancreatic cancer (PC) is an almost uniformly lethal disease with inflammation playing an important role in its progression. Sustained stimulation of purinergic receptor P2X7 drives induction of NLRP inflammasome activation. To understand the role of P2X7 receptor and inflammasome, we performed transcriptomic analysis of p48-LSL-Kras mice pancreatic tumors by next generation sequencing.

View Article and Find Full Text PDF

The role of the unique T-cell population, natural killer T (NKT) cells, which have similar functions to NK cells in pancreatic cancer (PC), is not yet evaluated. To address the regulatory roles of NKT cells on tumour progression through tumour-associated macrophages (TAM) and their production of microsomal prostaglandin E synthase-1 (mPGES-1) and 5-lipoxygenase (5-LOX) in (Kras)-driven pancreatic tumour (KPT) progression, we crossed CD1d mice deficient in both invariant and variant NKT cells with the Kras mice. Loss of NKT cells significantly increased pancreatic intraepithelial neoplasia (PanIN) lesions and also increased 5-LOX and mPGES-1 expression in M2-type macrophages and cancer stem-like cells in pancreatic tumours.

View Article and Find Full Text PDF

Recent development of genetically engineered mouse models (GEMs) for pancreatic cancer (PC) that recapitulates human disease progression has helped to identify new strategies to delay/inhibit PC development. We first found that expression of the pancreatic tumor-initiating/cancer stem cells (CSC) marker DclK1 occurs in early stage PC and in both early and late pancreatic intraepithelial neoplasia (PanIN) and that it increases as disease progresses in GEM and also in human PC. Genome-wide next generation sequencing of pancreatic ductal adenocarcinoma (PDAC) from GEM mice revealed significantly increased DclK1 along with inflammatory genes.

View Article and Find Full Text PDF

Ornithine decarboxylase (ODC) is the key rate-limiting enzyme in the polyamine synthesis pathway and it is overexpressed in a variety of cancers. We found that polyamine synthesis and modulation of ODC signaling occurs at early stages of pancreatic precursor lesions and increases as the tumor progresses in Kras-activated p48(Cre/+)-LSL-Kras(G12D/+) mice. Interest in use of the ODC inhibitor eflornithine (DFMO) as a cancer chemopreventive agent has increased in recent years since ODC was shown to be transactivated by the c-myc oncogene and to cooperate with the ras oncogene in malignant transformation of epithelial tissues.

View Article and Find Full Text PDF

Epidemiologic studies have shown that diabetes mellitus is associated positively with increased risk of pancreatic ductal adenocarcinoma (PDAC), and recent meta-analysis studies showed that metformin, reduces the risk of pancreatic cancer (PC). We tested the effects of metformin on pancreatic intraepithelial neoplasia (PanIN) and their progression to PDAC in p48Cre/+.LSL-KrasG12D/+ transgenic mice.

View Article and Find Full Text PDF

Nitric oxide-releasing aspirin (NO-aspirin) represents a novel class of promising chemopreventive agents. Unlike conventional nonsteroidal anti-inflammatory drugs, NO-aspirin seems to be free of adverse effects while retaining the beneficial activities of its parent compound. The effect of NO-aspirin on pancreatic carcinogenesis was investigated by assessing the development of precursor pancreatic lesions and adenocarcinomas in Kras(G12D/+) transgenic mice that recapitulate human pancreatic cancer progression.

View Article and Find Full Text PDF