Background: Multiple bacteria, viruses, protists, and helminths cause enteric infections that greatly impact human health and wellbeing. These enteropathogens are transmited via several pathways through human, animal, and environmental reservoirs. Individual qPCR assays have been extensively used to detect enteropathogens within these types of samples, whereas the TaqMan array card (TAC), which allows simultaneous detection of multiple enteropathogens, has only previously been validated in human clinical samples.
View Article and Find Full Text PDFCholera has been eliminated as a public health problem in high-income countries that have implemented sanitation system separating the community's fecal waste from their drinking water and food supply. These expensive, highly-engineered systems, first developed in London over 150 years ago, have not reached low-income high-risk communities across Asia. Barriers to their implementation in communities at highest risk for cholera include the high capital and operating costs for this technological approach, limited capacity and perverse incentives of local governments, and a decreasing availability of water.
View Article and Find Full Text PDFThere is widespread international acceptance that climate change, demographic shifts and resource limitations impact on the performance of water servicing in cities. In response to these challenges, many scholars propose that a fundamental move away from traditional centralised infrastructure towards more integrated water management is required. However, there is limited practical or scholarly understanding of how to enable this change in practice and few modern cities have done so successfully.
View Article and Find Full Text PDFThis article reports on the ongoing work and research involved in the development of a socio-technical model of urban water systems. Socio-technical means the model is not so much concerned with the technical or biophysical aspects of urban water systems, but rather with the social and institutional implications of the urban water infrastructure and vice versa. A socio-technical model, in the view purported in this article, produces scenarios of different urban water servicing solutions gaining or losing influence in meeting water-related societal needs, like potable water, drainage, environmental health and amenity.
View Article and Find Full Text PDFSustainable urban water systems are likely to be hybrids of centralized and decentralized infrastructure, managed as an integrated system in water-sensitive cities. The technology for many of these systems is available. However, social and institutional barriers, which can be understood as deeply embedded risk perceptions, have impeded their implementation.
View Article and Find Full Text PDFIn urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale.
View Article and Find Full Text PDFThis paper presents the local institutional and organizational development insights from a five-year ongoing interdisciplinary research project focused on advancing the implementation of sustainable urban water management. While it is broadly acknowledged that the inertia associated with administrative systems is possibly the most significant obstacle to advancing sustainable urban water management, contemporary research still largely prioritizes investigations at the technological level. This research is explicitly concerned with critically informing the design of methodologies for mobilizing and overcoming the administrative inertia of traditional urban water management practice.
View Article and Find Full Text PDFEnviron Manage
September 2005
It is now well established that the traditional practice of urban stormwater management contributes to the degradation of receiving waterways, and this practice was more recently critiqued for facilitating the wastage of a valuable water resource. However, despite significant advances in alternative "integrated urban stormwater management" techniques and processes over the last 20 years, wide-scale implementation has been limited. This problem is indicative of broader institutional impediments that are beyond current concerns of strengthening technological and planning process expertise.
View Article and Find Full Text PDF