Publications by authors named "Rebekah L Petroff"

DNA methylation, an epigenetic mark, has become a common outcome in epidemiological studies with the aid of affordable and reliable technologies. Yet the most widespread technique used to assess methylation, bisulfite conversion, does not allow for the differentiation of regular DNA methylation (5-mC) and other cytosine modifications, like that of hydroxymethylation (5-hmC). As both 5-mC and 5-hmC have distinct biological roles, sometimes with opposing effects, it is crucial to understand the difference between these marks.

View Article and Find Full Text PDF

Introduction: Early childhood development is a strong predictor of long-term health outcomes, potentially mediated via epigenetics (DNA methylation). The aim of the current study was to examine how childhood experiences, punitive parenting, and an intergenerational psychotherapeutic intervention may impact DNA methylation in young children and their mothers.

Methods: Mothers and their infants/toddlers between 0 and 24 months were recruited at baseline (n = 146, 73 pairs) to participate in a randomized control trial evaluating the effectiveness of The Michigan Model of Infant Mental Health Home Visiting (IMH-HV) parent-infant psychotherapy compared to treatment as usual.

View Article and Find Full Text PDF

Prostate cancer is the leading incident cancer among men in the United States. Firefighters are diagnosed with this disease at a rate 1.21 times higher than the average population.

View Article and Find Full Text PDF

Although toxicology uses animal models to represent real-world human health scenarios, a critical translational gap between laboratory-based studies and epidemiology remains. In this study, we aimed to understand the toxicoepigenetic effects on DNA methylation after developmental exposure to two common toxicants, the phthalate di(2-ethylhexyl) phthalate (DEHP) and the metal lead (Pb), using a translational paradigm that selected candidate genes from a mouse study and assessed them in four human birth cohorts. Data from mouse offspring developmentally exposed to DEHP, Pb, or control were used to identify genes with sex-specific sites with differential DNA methylation at postnatal day 21.

View Article and Find Full Text PDF

The developing epigenome changes rapidly, potentially making it more sensitive to toxicant exposures. DNA modifications, including methylation and hydroxymethylation, are important parts of the epigenome that may be affected by environmental exposures. However, most studies do not differentiate between these two DNA modifications, possibly masking significant effects.

View Article and Find Full Text PDF

The accumulation of every day exposures can impact health across the life course, but our understanding of such exposures is impeded by our ability to delineate the relationship between an individual's early life exposome and later life health effects. Measuring the exposome is challenging. Exposure assessed at a given time point captures a snapshot of the exposome but does not represent the full spectrum of exposures across the life course.

View Article and Find Full Text PDF

Background: Per- and polyfluoroalkyl substances (PFAS) are chemicals that are resistant to degradation and ubiquitous in our environments. PFAS may impact the developing epigenome, but current human evidence is limited to assessments of total DNA methylation. We assessed associations between first trimester PFAS exposures with newborn DNA methylation, including 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC).

View Article and Find Full Text PDF

Although noteworthy progress has been made in developing alternatives to animal testing, nonhuman primates still play a critical role in advancing biomedical research and will likely do so for many years. Core similarities between monkeys and humans in genetics, physiology, reproduction, development, and behavior make them excellent models for translational studies relevant to human health. This unit is designed to specifically address the role of nonhuman primates in neurotoxicology research and outlines the specialized assessments that can be used to measure exposure-related changes at the structural, chemical, cellular, molecular, and functional levels.

View Article and Find Full Text PDF

Background: The excitotoxic molecule, domoic acid (DA), is a marine algal toxin known to induce overt hippocampal neurotoxicity. Recent experimental and epidemiological studies suggest adverse neurological effects at exposure levels near the current regulatory limit (20 ppm, ). At these levels, cognitive effects occur in the absence of acute symptoms or evidence of neuronal death.

View Article and Find Full Text PDF

Phthalates are a diverse group of chemicals used in consumer products. Because they are so widespread, exposure to these compounds is nearly unavoidable. Recently, growing scientific consensus has suggested that phthalates produce health effects in developing infants and children.

View Article and Find Full Text PDF