Publications by authors named "Rebekah H Klingler"

Article Synopsis
  • The study investigates the impact of environmental neurotoxicants on Atlantic killifish populations, focusing on how gene expression and behavior can predict growth and survival outcomes.
  • Methylmercury exposure in one population led to observable changes in gene expression and behavior without measurable effects on growth or survival, while PCB126 exposure resulted in decreased activity and predicted negative impacts on growth and survival for both populations.
  • The research connects molecular and behavioral findings to create models that quantitatively assess ecological risks, highlighting the importance of linking individual-level data to broader population outcomes.
View Article and Find Full Text PDF

Fish swimming behavior is a commonly measured response in aquatic ecotoxicology because behavior is considered a whole organism-level effect that integrates many sensory systems. Recent advancements in animal behavior models, such as hidden Markov chain models (HMM), suggest an improved analytical approach for toxicology. Using both new and traditional approaches, we examined the sublethal effects of PCB126 and methylmercury on yellow perch (YP) larvae () using three doses.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the effects of environmentally relevant dietary MeHg exposures on adult female yellow perch (Perca flavescens) and female zebrafish (Danio rerio) ovarian development and reproduction. Yellow perch were used in the study for their socioeconomic and ecological importance within the Great Lakes basin, and the use of zebrafish allowed for a detailed analysis of the molecular effects of MeHg following a whole life-cycle exposure. Chronic whole life dietary exposure of F zebrafish to MeHg mimics realistic wildlife exposure scenarios, and the twenty-week adult yellow perch exposure (where whole life-cycle exposures are difficult) captures early seasonal ovarian development.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a ubiquitous environmental neurotoxicant, with human exposures predominantly resulting from fish consumption. Developmental exposure of zebrafish to MeHg is known to alter their neurobehavior. The current study investigated the direct exposure and transgenerational effects of MeHg, at tissue doses similar to those detected in exposed human populations, on sperm epimutations (i.

View Article and Find Full Text PDF

Maternal methylmercury (MeHg) exposure from a contaminated diet causes adverse effects in offspring, but the underlying mechanism(s) remains unclear. In the present study, we investigated the effects of maternal dietary MeHg-exposure on the offspring, using the zebrafish (Danio rerio) as a model system. Female zebrafish were exposed to MeHg (0.

View Article and Find Full Text PDF

Background: Fetal alcohol spectrum disorders (FASD) are a leading cause of neurodevelopmental disability. Nonhuman animal models offer novel insights into its underlying mechanisms. Although the developing zebrafish has great promise for FASD research, a significant challenge to its wider adoption is the paucity of clear, mechanistic parallels between its ethanol (EtOH) responses and those of nonpiscine, established models.

View Article and Find Full Text PDF