Publications by authors named "Rebekah A Warwick"

Article Synopsis
  • The study investigates how inputs from the brain, specifically histaminergic neurons from the hypothalamus, influence the processing of visual information in the mammalian retina.
  • Histamine application changes the activity of retinal ganglion cells, particularly enhancing responses in direction-selective cells to fast-moving objects, which aligns with increased arousal conditions.
  • The use of antihistamines shows that these brain-induced modifications also affect visual sensitivity in both mice and humans, suggesting a significant evolutionary role for the histaminergic system in vision.
View Article and Find Full Text PDF

Dopamine has long been reported to enhance antagonistic surrounds of retinal ganglion cells (RGCs). Yet, the retina contains many different RGC subtypes and the effects of dopamine can be subtype-specific. Using multielectrode array (MEA) recordings we investigated how dopamine shapes the receptive fields of RGCs in the mouse retina.

View Article and Find Full Text PDF

A retina completely devoid of topographic variations would be homogenous, encoding any given feature uniformly across the visual field. In a naive view, such homogeneity would appear advantageous. However, it is now clear that retinal topographic variations exist across mammalian species in a variety of forms and patterns.

View Article and Find Full Text PDF

Stimulus characteristics of the mouse's visual field differ above and below the skyline. Here, we show for the first time that retinal ganglion cells (RGCs), the output neurons of the retina, gradually change their functional properties along the ventral-dorsal axis to allow better representation of the different stimulus characteristics. We conducted two-photon targeted recordings of transient-Offα-RGCs and found that they gradually became more sustained along the ventral-dorsal axis, revealing >5-fold-longer duration responses in the dorsal retina.

View Article and Find Full Text PDF

Alpha-herpesviruses, herpes simplex viruses (HSV) and varicella zoster virus (VZV), are pathogens of the peripheral nervous system. After primary infection, these viruses establish latency within sensory ganglia, while retaining the ability to reactivate. Reactivation of VZV results in herpes zoster, a condition characterized by skin lesions that leads to post-herpetic neuralgia.

View Article and Find Full Text PDF

It has been proposed that glutamate serves as a mediator between neurons and satellite glial cells (SGCs) in sensory ganglia and that SGCs release glutamate. Using a novel method, we studied glutamate release from SGCs from murine trigeminal ganglia. Sensory neurons with adhering SGCs were enzymatically isolated from wild type and transgenic mice in which vesicular exocytosis was suppressed in glial cells.

View Article and Find Full Text PDF

Pain is a serious and common problem with patients suffering from multiple sclerosis (MS). Very little has been done to investigate the peripheral mechanisms of pain in MS. Here we used a mouse model of experimental autoimmune encephalomyelitis (EAE) to investigate the possible contribution of satellite glial cells (SGCs) to pain in MS.

View Article and Find Full Text PDF