Healthy adult horses can balance accumulation and dissipation of body heat to maintain their body temperature between 37.5 and 38.5 °C, when they are in their thermoneutral zone (5 to 25 °C).
View Article and Find Full Text PDFThe frequent monitoring of a horse’s body temperature post strenuous exercise is critical to prevent or alleviate exertional heat illness (EHI) from occurring. Percutaneous thermal sensing microchip (PTSM) technology has the potential to be used as a means of monitoring a horse’s body temperature during and post-exercise. However, the accuracy of the temperature readings obtained, and their relationship to core body temperature are dependent on where they are implanted.
View Article and Find Full Text PDFType 1 polysaccharide storage myopathy caused by genetic mutation in the glycogen synthase 1 gene is present in many breeds including the Noriker and Haflinger horses. In humans, EMG has already been used to document changes in the muscle activity patterns of patients affected by human glycogen storage disorders. Therefore, the aim of the present study was to describe gluteus muscle activity with surface electromyography (sEMG) in Haflinger and Noriker horses with known GYS1 mutation status during walk and trot.
View Article and Find Full Text PDFAccurately measuring body temperature in horses will improve the management of horses suffering from or being at risk of developing postrace exertional heat illness. PTSM has the potential for measuring body temperature accurately, safely, rapidly, and noninvasively. This study was undertaken to investigate the relation between the core body temperature and PTSM temperatures prior to, during, and immediately after exercise.
View Article and Find Full Text PDFElectrical stimulation is commonly used as a modality for physical therapy in human and veterinary medicine. However, studies measuring the movement generated by electrical stimulation in horses are rare. The present study therefore evaluates the range of movement provoked by a commercially available physical therapy unit (FES310) and contrasts it with the movement generated by manually induced pelvic inclination (back rounding).
View Article and Find Full Text PDFThe present study investigated accelerations of the front and hind hooves of horses comparing two different shoe types. A standard steel shoe, with studs, pins, and in some instances with toe grabs, was compared to a steel shoe covered on the bottom with a layer of polyurethane. Four horses were used; they trotted in hand on an asphalt track at their self-selected speed.
View Article and Find Full Text PDFLameness evaluation (LE) is an important veterinary skill, but it can be a challenging task to teach. Acoustic and visual input in conjunction with acting are the three major learning channels for acquiring new information. Acting (e.
View Article and Find Full Text PDFBackground: The equine m. gluteus medius (GM) is the largest muscle of the horse, its main movement function is the extension of the hip joint. The objective of the present study was to measure equine GM activity in three adjacent locations on GM during walk and trot on a treadmill, in order to document potential differences.
View Article and Find Full Text PDFThis paper introduces a new method for data analysis of animal muscle activation during locomotion. It is based on fitting Gaussian mixture models (GMMs) to surface EMG data (sEMG). This approach enables researchers/users to isolate parts of the overall muscle activation within locomotion EMG data.
View Article and Find Full Text PDFJ Electromyogr Kinesiol
June 2016
The study of muscle activity using surface electromyography (sEMG) is commonly used for investigations of the neuromuscular system in man. Although sEMG has faced methodological challenges, considerable technical advances have been made in the last few decades. Similarly, the field of animal biomechanics, including sEMG, has grown despite being confronted with often complex experimental conditions.
View Article and Find Full Text PDFDuring both locomotion and body movements at stance, the head and neck of the horse are a major craniocaudal and lateral balancing mechanism employing input from the visual, vestibular and proprioceptive systems. The function of the equine neck has recently become the focus of several research groups; this is probably also feeding on an increase of interest in the equine neck in equestrian sports, with a controversial discussion of specific neck positions such as maximum head and neck flexion. The aim of this review is to offer an overview of new findings on the structures and functions of the equine neck, illustrating their interplay.
View Article and Find Full Text PDFLaterolateral radiographs of equine necks are reported to be inaccurate in determining the site of spinal cord lesions even when a myelogram is carried out. The goal of this study was to assess constrictions present in the cervical vertebral canal at any time point throughout the extremes of movement. Sixteen equine cervical vertebral columns without history of cervical disease were used.
View Article and Find Full Text PDF