Objective: To report the treatment and outcome of a a captive chimpanzee (Pan troglodytes) undergoing 3-portal laparoscopic hysterectomy. Additionally, the technique used for successful urinary catheterization is described.
Animals: A 29-year-old female intact chimpanzee with uterine bleeding.
Synthetic triptycene analogs (TT code number) mimic the antitumor effects of daunorubicin (DAU) in vitro, but have the advantage of blocking nucleoside transport, inhibiting both DNA topoisomerase I and II activities, and retaining their efficacy in multidrug-resistant (MDR) tumor cells. Since TT bisquinones induce poly(ADP-ribose) polymerase-1 (PARP-1) cleavage at 6 h and internucleosomal DNA fragmentation at 24 h, which are, respectively, early and late markers of apoptosis, these antitumor drugs were tested for their ability to trigger the release of mitochondrial cytochrome c (Cyt c) and the caspase activation cascade in the HL-60 cell system. Based on their ability to reduce the viability of wild-type, drug-sensitive HL-60-S cells in the nanomolar range, six lead antitumor TT bisquinones have been identified so far: TT2, TT13, TT16, TT19, TT24 and TT26.
View Article and Find Full Text PDFSynthetic analogs of 1,4-anthraquinone (AQ code number), a compound that mimics the antiproliferative effects of daunorubicin (daunomycin) in the nanomolar range in vitro but has the advantage of blocking nucleoside transport and retaining its efficacy in multidrug-resistant tumor cells, were tested for their ability to induce apoptosis in the HL-60 cell system. AQ10 and, especially, the new lead antiproliferative compounds AQ8 and AQ9 reduce the growth and integrity of wild-type, drug-sensitive, HL-60-S cells more effectively than AQ1, suggesting that various methyl group substituents at C6 may enhance the bioactivity of the parent compound. Internucleosomal DNA fragmentation, a late marker of apoptosis, is similarly induced in a biphasic manner by increasing concentrations of AQ8 and AQ9 at 24 hr.
View Article and Find Full Text PDF