We used the ^{138}Ba(d,α) reaction to carry out an in-depth study of states in ^{136}Cs, up to around 2.5 MeV. In this Letter, we place emphasis on hitherto unobserved states below the first 1^{+} level, which are important in the context of solar neutrino and fermionic dark matter (FDM) detection in large-scale xenon-based experiments.
View Article and Find Full Text PDFCarbon burning is a key step in the evolution of massive stars, Type 1a supernovae and superbursts in x-ray binary systems. Determining the ^{12}C+^{12}C fusion cross section at relevant energies by extrapolation of direct measurements is challenging due to resonances at and below the Coulomb barrier. A study of the ^{24}Mg(α,α^{'})^{24}Mg reaction has identified several 0^{+} states in ^{24}Mg, close to the ^{12}C+^{12}C threshold, which predominantly decay to ^{20}Ne(ground state)+α.
View Article and Find Full Text PDF