Kv2 voltage-gated potassium channels are modulated by amphoterin-induced gene and open reading frame (AMIGO) neuronal adhesion proteins. Here, we identify steps in the conductance activation pathway of Kv2.1 channels that are modulated by AMIGO1 using voltage-clamp recordings and spectroscopy of heterologously expressed Kv2.
View Article and Find Full Text PDFA primary goal of molecular physiology is to understand how conformational changes of proteins affect the function of cells, tissues, and organisms. Here, we describe an imaging method for measuring the conformational changes of the voltage sensors of endogenous ion channel proteins within live tissue, without genetic modification. We synthesized GxTX-594, a variant of the peptidyl tarantula toxin guangxitoxin-1E, conjugated to a fluorophore optimal for two-photon excitation imaging through light-scattering tissue.
View Article and Find Full Text PDFIon channels are polymorphic membrane proteins whose high-resolution structures offer images of individual conformations, giving us starting points for identifying the complex and transient allosteric changes that give rise to channel physiology. Here, we report live-cell imaging of voltage-dependent structural changes of voltage-gated Kv2.1 channels using peptidyl tarantula toxins labeled with an environment-sensitive fluorophore, whose spectral shifts enable identification of voltage-dependent conformation changes in the resting voltage sensing domain (VSD) of the channel.
View Article and Find Full Text PDFPrevious studies showed that a series of purified condensed tannins (CTs) from warm-season perennial legumes exhibited high variability in their modulation of methane production during in vitro rumen digestion. The molecular weight differences between these CTs did not provide correlation with either the in vitro CH₄ production or the ability to precipitate bovine serum albumin. In an effort to delineate other structure-activity relationships from these methane abatement experiments, the structures of purified CTs from these legumes were assessed with a combination of methanolysis, quantitative thiolysis, ¹H-C HSQC NMR spectroscopy and ultrahigh-resolution MALDI-TOF MS.
View Article and Find Full Text PDF