Publications by authors named "Rebecca Wheatley"

Chronic exposure to toxic metals is a serious global health concern. However, population-wide biomonitoring is costly and carries several sampling constraints. Though hair sampling can be a useful way to assess environmental exposure, external contamination is a long-standing concern, and a pre-cleaning step prior to metal quantification has long been recommended despite a lack of evidence for its efficacy.

View Article and Find Full Text PDF

Animals alter their habitat use in response to the energetic demands of movement ('energy landscapes') and the risk of predation ('the landscape of fear'). Recent research suggests that animals also select habitats and move in ways that minimise their chance of temporarily losing control of movement and thereby suffering slips, falls, collisions or other accidents, particularly when the consequences are likely to be severe (resulting in injury or death). We propose that animals respond to the costs of an 'accident landscape' in conjunction with predation risk and energetic costs when deciding when, where, and how to move in their daily lives.

View Article and Find Full Text PDF

Animals are responsive to predation risk, often seeking safer habitats at the cost of foraging rewards. Although previous research has examined how habitat features affect detection by predators, little is known about how the interaction of habitat features, sensory cues and physical performance capabilities affect prey escape performance once detected. To investigate how specific habitat features affect predation risk, we developed an individual-based model of terrestrial predator-prey pursuits in habitats with programmable features.

View Article and Find Full Text PDF

Prey species often modify their foraging and reproductive behaviors to avoid encounters with predators; yet once they are detected, survival depends on out-running, out-maneuvering, or fighting off the predator. Though predation attempts involve at least two individuals-namely, a predator and its prey-studies of escape performance typically measure a single trait (e.g.

View Article and Find Full Text PDF

Introduced predators combined with habitat loss and modification are threatening biodiversity worldwide, particularly the 'critical weight range' (CWR) mammals of Australia. In order to mitigate the impacts of invasive predators on native species in different landscapes, we must understand how the prey's morphology and performance determine their survival. Here, we evaluated how phenotypic traits related to escape performance predict the probability of survival for an endangered CWR mammal, the northern quoll ().

View Article and Find Full Text PDF

Characterisation of an organism's performance in different habitats provides insight into the conditions that allow it to survive and reproduce. In recent years, the northern quoll () - a medium-sized semi-arboreal marsupial native to northern Australia - has undergone significant population declines within open forest, woodland and riparian habitats, but less so in rocky areas. To help understand this decline, we quantified the biomechanical performance of wild northern quolls as they ran up inclined narrow (13 mm pole) and inclined wide (90 mm platform) substrates.

View Article and Find Full Text PDF

Movement speed can underpin an animal's probability of success in ecological tasks. Prey often use agility to outmanoeuvre predators; however, faster speeds increase inertia and reduce agility. Agility is also constrained by grip, as the foot must have sufficient friction with the ground to apply the forces required for turning.

View Article and Find Full Text PDF

Studies of sexual selection primarily focus on morphological traits such as body size and secondary trait dimorphism, with less attention been given to the functional differences between the sexes and even more so their thermal performance capacities. Each sex may benefit from possessing different thermal performance capacities that would allow them to maximise their fitness relative to their different reproductive roles; especially when performances are closely related to reproductive success. Here, we examine sexual divergence in thermal sensitivities of performance across three populations of the Asian house gecko (Hemidactylus frenatus) over an extensive latitudinal cline.

View Article and Find Full Text PDF

How fast should animals move when trying to survive? Although many studies have examined how fast animals can move, the fastest speed is not always best. For example, an individual escaping from a predator must run fast enough to escape, but not so fast that it slips and falls. To explore this idea, we developed a simple mathematical model that predicts the optimal speed for an individual running from a predator along a straight beam.

View Article and Find Full Text PDF