A community engaged research (CER) approach was used to provide an exposure assessment of poly- and perfluorinated (PFAS) compounds in North Carolina residential drinking water. Working in concert with community partners, who acted as liaisons to local residents, samples were collected by North Carolina residents from three different locations along the Cape Fear River basin: upper, middle, and lower areas of the river. Residents collected either drinking water samples from their homes or recreational water samples from near their residence that were then submitted by the community partners for PFAS analysis.
View Article and Find Full Text PDFCompost is widely used in agriculture as fertilizer while providing a practical option for solid municipal waste disposal. However, compost may also contain per- and polyfluoroalkyl substances (PFAS), potentially impacting soils and leading to PFAS entry into food chains and ultimately human exposure risks via dietary intake. This study examined how compost affects the bioavailability and uptake of eight PFAS (two ethers, three fluorotelomer sulfonates, and three perfluorosulfonates) by lettuce (Lactuca sativa) grown in commercial organic compost-amended, PFAS spiked soils.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2022
Rationale: The ability to perform absolute quantitation and non-targeted analysis on a single mass spectrometry instrument would be advantageous to many researchers studying per- and polyfluoroalkyl substances (PFAS). High-resolution accurate mass (HRAM) instrumentation (typically deployed for non-targeted work) carries several advantages over traditional triple quadrupole workflows when performing absolute quantitation. Processing this data using a vendor-neutral software would promote collaboration for these environmental studies.
View Article and Find Full Text PDFinfection of wheat () has become an increasing problem in organic wheat agriculture throughout the world. Little is known about how this pathogen alters host metabolism to ensure a successful infection. We investigated how allocates resources from wheat for its growth over the life cycle of the pathogen.
View Article and Find Full Text PDF