The assembly of membranous extensions such as microvilli and cilia in polarized cells is a tightly regulated, yet poorly understood, process. Peptidylglycine α-amidating monooxygenase (PAM), a membrane enzyme essential for the synthesis of amidated bioactive peptides, was recently identified in motile and non-motile (primary) cilia and has an essential role in ciliogenesis in Chlamydomonas, Schmidtea and mouse. In mammalian cells, changes in PAM levels alter secretion and organization of the actin cytoskeleton.
View Article and Find Full Text PDFTrace metals are essential for health but toxic when present in excess. The maintenance of trace metals at physiologic levels reflects both import and export by cells and absorption and excretion by organs. The mechanism by which this maintenance is achieved in vertebrate organisms is incompletely understood.
View Article and Find Full Text PDFA long and productive history in biomedical research defines the chick as a model for human biology. Fundamental discoveries, including the description of directional circulation propelled by the heart and the link between oncogenes and the formation of cancer, indicate its utility in cardiac biology and cancer. Despite the more recent arrival of several vertebrate and invertebrate animal models during the last century, the chick embryo remains a commonly used model for vertebrate biology and provides a tractable biological template.
View Article and Find Full Text PDFBackground: To generate the mature intestine, splanchnic mesoderm diversifies into six different tissue layers each with multiple cell types through concurrent and complex morphogenetic events. Hindering the progress of research in the field is the lack of a detailed description of the fundamental morphological changes that constitute development of the intestinal mesoderm.
Results: We used immunofluorescence and morphometric analyses of wild-type and Tg(tie1:H2B-eYFP) quail embryos to establish a comprehensive timeline of mesodermal development in the avian intestine.
Mesothelium is the surface layer of all coelomic organs and is crucial for the generation of their vasculature. Still, our understanding of the genesis of this essential cell type is restricted to the heart where a localized exogenous population of cells, the proepicardium, migrates to and envelops the myocardium supplying mesothelial, vascular and stromal cell lineages. Currently it is not known whether this pattern of development is specific to the heart or applies broadly to other coelomic organs.
View Article and Find Full Text PDFEpicardial development is a process during which epithelial sheet movement, single cell migration, and differentiation are coordinated to generate coronary arteries. Signaling cascades regulate the concurrent and complex nature of these three events. Through simple and highly reproducible assays, we identified small organic molecules that impact signaling pathways regulating these epicardial behaviors.
View Article and Find Full Text PDF