Plant-beneficial microbial inoculants are often outcompeted by native soil microbes in the field. A new study shows that fierce competition among the most beneficial microbes leads to a reduction in their abundance in the soil, which, in turn, reduces plant growth.
View Article and Find Full Text PDFUnderstanding the origins and impacts of novel traits has been a perennial interest in many realms of ecology and evolutionary biology. Here, we build on previous evolutionary and philosophical treatments of this subject to encompass novelties across biological scales and eco-evolutionary perspectives. By defining novelties as new features at one biological scale that have emergent effects at other biological scales, we incorporate many forms of novelty that have previously been treated in isolation (such as novelty from genetic mutations, new developmental pathways, new morphological features, and new species).
View Article and Find Full Text PDFA goal of modern biology is to develop the genotype-phenotype (G→P) map, a predictive understanding of how genomic information generates trait variation that forms the basis of both natural and managed communities. As microbiome research advances, however, it has become clear that many of these traits are , being governed by genetic variation encoded not only by the host's own genome, but also by the genomes of myriad cryptic symbionts. Building a reliable G→P map therefore requires accounting for the multitude of interacting genes and even genomes involved in symbiosis.
View Article and Find Full Text PDFGiven the need to predict the outcomes of (co)evolution in host-associated microbiomes, whether microbial and host fitnesses tend to trade-off, generating conflict, remains a pressing question. Examining the relationships between host and microbe fitness proxies at both the phenotypic and genomic levels can illuminate the mechanisms underlying interspecies cooperation and conflict. We examined naturally occurring genetic variation in 191 strains of the model microbial symbiont , paired with each of two host genotypes in single- or multi-strain experiments to determine how multiple proxies of microbial and host fitness were related to one another and test key predictions about mutualism evolution at the genomic scale, while also addressing the challenge of measuring microbial fitness.
View Article and Find Full Text PDFDespite decades of research, we are only just beginning to understand the forces maintaining variation in the nitrogen-fixing symbiosis between rhizobial bacteria and leguminous plants. In their recent work, Alexandra Weisberg and colleagues use genomics to document the breadth of mobile element diversity that carries the symbiosis genes of in natural populations. Studying rhizobia from the perspective of their mobile genetic elements, which have their own transmission modes and fitness interests, reveals novel mechanisms for the generation and maintenance of diversity in natural populations of these ecologically and economically important mutualisms.
View Article and Find Full Text PDFMany important plant traits are products of nested symbiosis: mobile genetic elements (MGEs) are nested within microbes, which in turn, are nested within plants. Plant trait variation is therefore not only determined by the plant's genome, but also by loci within microbes and MGEs. Yet it remains unclear how interactions and coevolution within nested symbiosis impacts the evolution of plant traits.
View Article and Find Full Text PDFAdvances in microbiome science require a better understanding of how beneficial microbes adapt to hosts. We tested whether hosts select for more-cooperative microbial strains with a year-long evolution experiment and a cross-inoculation experiment designed to explore how nitrogen-fixing bacteria (rhizobia) adapt to legumes. We paired the bacterium with one of five genotypes that vary in how strongly they "choose" bacterial symbionts.
View Article and Find Full Text PDFPremise: The ecological outcomes of mutualism are well known to shift across abiotic or biotic environments, but few studies have addressed how different environments impact evolutionary responses, including the intensity of selection on and the expression of genetic variance in key mutualism-related traits.
Methods: We planted 30 maternal lines of the legume Medicago lupulina in four field common gardens and compared our measures of selection on and genetic variance in nodulation, a key trait reflecting legume investment in the symbiosis, with those from a previous greenhouse experiment using the same 30 M. lupulina lines.
Many hosts preferentially associate with or reward better symbionts, but how these symbiont preference traits evolve is an open question. Legumes often form more nodules with or provide more resources to rhizobia that fix more nitrogen (N), but they also acquire N from soil via root foraging. It is unclear whether root responses to abiotically and symbiotically derived N evolve independently.
View Article and Find Full Text PDFBacteria containing magnetosomes (protein-bound nanoparticles of magnetite or greigite) are common to many sedimentary habitats, but have never been found before to live within another organism. Here, we show that octahedral inclusions in the extracellular symbionts of the marine bivalve Thyasira cf. gouldi contain iron, can exhibit magnetic contrast and are most likely magnetosomes.
View Article and Find Full Text PDFWithin the marine bivalve family Thyasiridae, some species have bacterial chemosymbionts associated with gill epithelial cells while other species are asymbiotic. Although the abundance of symbionts in a particular thyasirid species may vary, the structure of their gills (i.e.
View Article and Find Full Text PDF