Publications by authors named "Rebecca Stairley"

Mammalian cardiomyocytes have limited regenerative ability. Cardiac disease, such as congenital heart disease and myocardial infarction, causes an initial loss of cardiomyocytes through regulated cell death (RCD). Understanding the mechanisms that govern RCD in the injured myocardium is crucial for developing therapeutics to promote heart regeneration.

View Article and Find Full Text PDF

Neonatal mouse hearts have transient renewal capacity, which is lost in juvenile and adult stages. In neonatal mouse hearts, myocardial infarction (MI) causes an initial loss of cardiomyocytes. However, it is unclear which type of regulated cell death (RCD) occurs in stressed cardiomyocytes.

View Article and Find Full Text PDF

Neonatal mouse hearts have transient renewal capacity which is lost in juvenile and adult hearts. After myocardial infarction (MI) in neonatal hearts, an initial loss of cardiomyocytes occurs but it is unclear through which type of regulated cell death (RCD). In the current studies, we induced MI in neonatal and juvenile mouse hearts, and show that ischemic cardiomyocytes primarily undergo ferroptosis, a non-apoptotic and iron-dependent form of RCD.

View Article and Find Full Text PDF

Mitral valve prolapse (MVP) is a common cardiac valve disease that often progresses to serious secondary complications requiring surgery. MVP manifests as extracellular matrix disorganization and biomechanically incompetent tissues in the adult setting. However, MVP has recently been shown to have a developmental basis, as multiple causal genes expressed during embryonic development have been identified.

View Article and Find Full Text PDF

Mitral valve prolapse (MVP) is a common form of valve disease and can lead to serious secondary complications. The recent identification of MVP causal mutations in primary cilia-related genes has prompted the investigation of cilia-mediated mechanisms of disease inception. Here, we investigate the role of platelet-derived growth factor receptor-alpha (PDGFRα), a receptor known to be present on the primary cilium, during valve development using genetically modified mice, biochemical assays, and high-resolution microscopy.

View Article and Find Full Text PDF

Non-syndromic mitral valve prolapse (MVP) is the most common heart valve disease affecting 2.4% of the population. Recent studies have identified genetic defects in primary cilia as causative to MVP, although the mechanism of their action is currently unknown.

View Article and Find Full Text PDF

Background: Bicuspid aortic valve (BAV) disease is a congenital defect that affects 0.5% to 1.2% of the population and is associated with comorbidities including ascending aortic dilation and calcific aortic valve stenosis.

View Article and Find Full Text PDF

Mitral valve prolapse (MVP) affects 1 in 40 people and is the most common indication for mitral valve surgery. MVP can cause arrhythmias, heart failure, and sudden cardiac death, and to date, the causes of this disease are poorly understood. We now demonstrate that defects in primary cilia genes and their regulated pathways can cause MVP in familial and sporadic nonsyndromic MVP cases.

View Article and Find Full Text PDF

Mitral valve prolapse (MVP) affects 2.4% of the population and has poorly understood etiology. Recent genetic studies have begun to unravel the complexities of MVP and through these efforts, mutations in the FLNA (Filamin-A) gene were identified as disease causing.

View Article and Find Full Text PDF