The FDA-approved anti-DNA virus agent cidofovir (CDV) is being evaluated in phase II/III clinical trials for the treatment of human papillomavirus (HPV)-associated tumors. However, previous observations had shown that CDV also inhibits the growth of vascular tumors induced by fibroblast growth factor-2 (FGF2)-transformed FGF2-T-MAE cells. Here, we demonstrate that CDV inhibits metastasis induced by FGF2-driven, virus-independent tumor cells.
View Article and Find Full Text PDF5'-O-Tritylinosine (KIN59) is an allosteric inhibitor of the angiogenic enzyme thymidine phosphorylase. Previous observations showed the capacity of KIN59 to abrogate thymidine phosphorylase-induced as well as developmental angiogenesis in the chicken chorioallantoic membrane (CAM) assay. Here, we show that KIN59 also inhibits the angiogenic response triggered by fibroblast growth factor-2 (FGF2) but not by VEGF in the CAM assay.
View Article and Find Full Text PDFObjectives: To progress the anti-varicella-zoster-virus (VZV) aryl bicyclic nucleoside analogues (BCNAs) to the point of Phase 1 clinical trial for herpes zoster.
Methods: A new chromatography-free synthetic access to the lead anti-VZV aryl BCNAs is reported. The anti-VZV activity of lead Cf1743 was evaluated in monolayer cell cultures and organotypic epithelial raft cultures of primary human keratinocytes.
Varicella-zoster virus (VZV) is responsible for primary infections as well as reactivations after latency in the dorsal root ganglia. The treatment of such infections is mandatory for immunocompromised patients and highly recommended for elderly patients with herpes zoster infections (also called zona or shingles). The treatment of choice is presently based on four molecules, acyclovir (ACV), valaciclovir, famciclovir, and (in Europe) brivudine (BVDU).
View Article and Find Full Text PDFThe susceptibility of the bicyclic nucleoside analogs (BCNAs), highly potent and selective inhibitors of varicella-zoster virus (VZV), to the enzymes involved in nucleoside/nucleobase catabolism has been investigated in comparison with the established anti-VZV agent (E)-5-(2-bromovinyl)-2'-deoxyuridine [BVDU; brivudine (Zostex)]. Whereas human and bacterial thymidine phosphorylases (TPases) efficiently converted BVDU to its antivirally inactive free base (E)-5-(2-bromovinyl)uracil (BVU), BCNAs showed no evidence of conversion to the free base in the presence of these enzymes. The lack of substrate affinity of TPase for the BCNAs could be rationalized by computer-assisted molecular modeling of the BCNAs in the TPase active site.
View Article and Find Full Text PDFRecently, an entirely new class of bicyclic nucleoside analogs (BCNAs) was found to display exquisite potency and selectivity as inhibitors of varicella-zoster virus (VZV) replication in cell culture. A striking difference in their ability to convert the BCNAs to their phosphorylated derivatives was observed between the VZV-encoded thymidine kinase (TK) and the very closely related herpes simplex virus type 1 (HSV-1) TK. Whereas VZV TK efficiently phosphorylated the BCNAs, HSV-1 TK was unable to do so.
View Article and Find Full Text PDF