Objective: Investigational cell therapies have been developed as disease-modifying agents for the treatment of osteoarthritis (OA), including those that inducibly respond to inflammatory factors driving OA progression. However, dysregulated inflammatory cascades do not specifically signify the presence of OA. Here, we deploy a synthetic receptor platform that regulates cell behaviors in an arthritis-specific fashion to confine transgene expression to sites of cartilage degeneration.
View Article and Find Full Text PDFObjective: Investigational cell therapies have been developed as disease-modifying agents for the treatment of osteoarthritis (OA), including those that inducibly respond to inflammatory factors driving OA progression. However, dysregulated inflammatory cascades do not specifically signify the presence of OA. Here, we deploy a synthetic receptor platform that regulates cell behaviors in an arthritis-specific fashion to confine transgene expression to sites characterized by cartilage degeneration.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is a heterogeneous and challenging-to-treat breast cancer subtype. The clinical introduction of immune checkpoint inhibitors (ICI) for TNBC has had mixed results, and very few patients achieved a durable response. The PI3K/AKT pathway is frequently mutated in breast cancer.
View Article and Find Full Text PDFCancer therapies trigger diverse cellular responses, ranging from apoptotic death to acquisition of persistent therapy-refractory states such as senescence. Tipping the balance toward apoptosis could improve treatment outcomes regardless of therapeutic agent or malignancy. We find that inhibition of the mitochondrial protein BCL-xL increases the propensity of cancer cells to die after treatment with a broad array of oncology drugs, including mitotic inhibitors and chemotherapy.
View Article and Find Full Text PDFBackground: While immune checkpoint blockade (ICB) is the current first-line treatment for metastatic melanoma, it is effective for ~ 52% of patients and has dangerous side effects. The objective here was to identify the feasibility and mechanism of RAS/RAF/PI3K pathway inhibition in melanoma to sensitize tumors to ICB therapy.
Methods: Rigosertib (RGS) is a non-ATP-competitive small molecule RAS mimetic.
Patient-derived cancer organoids hold great potential to accurately model and predict therapeutic responses. Efficient organoid isolation methods that minimize post-collection manipulation of tissues would improve adaptability, accuracy, and applicability to both experimental and real-time clinical settings. Here we present a simple and minimally invasive fine-needle aspiration (FNA)-based organoid culture technique using a variety of tumor types including gastrointestinal, thyroid, melanoma, and kidney.
View Article and Find Full Text PDFPurpose: Over 60% of patients with melanoma respond to immune checkpoint inhibitor (ICI) therapy, but many subsequently progress on these therapies. Second-line targeted therapy is based on mutation status, but no available agents are available for , and mutations. Over 70% of melanoma tumors have activation of the MAPK pathway due to or mutations, while loss or mutation of occurs in approximately 40% of melanomas, resulting in unregulated MDM2-mediated ubiquitination and degradation of p53.
View Article and Find Full Text PDFIntrinsic resistance of unknown mechanism impedes the clinical utility of inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) in malignancies other than breast cancer. Here, we used melanoma patient-derived xenografts (PDXs) to study the mechanisms for CDK4/6i resistance in preclinical settings. We observed that melanoma PDXs resistant to CDK4/6i frequently displayed activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, and inhibition of this pathway improved CDK4/6i response in a p21-dependent manner.
View Article and Find Full Text PDF