Chemotherapy-induced peripheral neuropathy (CIPN) from oxaliplatin and taxane drugs is a bothersome toxicity. Palmitoylethanolamide (PEA) has been reported to improve myelinated nerve fiber function in patients experiencing painful CIPN. We conducted a double-blind, placebo-controlled, randomized trial of PEA in patients with established CIPN.
View Article and Find Full Text PDFCoral reefs, among the most diverse ecosystems on Earth, currently face major threats from pollution, unsustainable fishing practices , and perturbations in environmental parameters brought on by climate change. Corals also sustain regular wounding from other sea life and human activity. Recent reef restoration practices have even involved intentional wounding by systematically breaking coral fragments and relocating them to revitalize damaged reefs, a practice known as microfragmentation.
View Article and Find Full Text PDFIn an inflammatory setting, macrophages can be polarized to an inflammatory M1 phenotype or to an anti-inflammatory M2 phenotype, as well as existing on a spectrum between these two extremes. Dysfunction of this phenotypic switch can result in a population imbalance that leads to chronic wounds or disease due to unresolved inflammation. Therapeutic interventions that target macrophages have therefore been proposed and implemented in diseases that feature chronic inflammation such as diabetes mellitus and atherosclerosis.
View Article and Find Full Text PDFThe normal wound healing response is characterized by a progression from clot formation, to an inflammatory phase, to a repair phase, and finally, to remodeling. In many chronic wounds there is an extended inflammatory phase that stops this progression. In order to understand the inflammatory phase in more detail, we developed an ordinary differential equation model that accounts for two systemic mediators that are known to modulate this phase, estrogen (a protective hormone during wound healing) and cortisol (a hormone elevated after trauma that slows healing).
View Article and Find Full Text PDFWound healing is a complex biological process which involves many cell types and biochemical signals and which progresses through multiple, overlapping phases. In this manuscript, we develop a model of collagen accumulation as a marker of wound healing. The mathematical model is a system of ordinary differential equations which tracks fibroblasts, collagen, inflammation and pathogens.
View Article and Find Full Text PDFThe complex interactions that characterize acute wound healing have stymied the development of effective therapeutic modalities. The use of computational models holds the promise to improve our basic approach to understanding the process. By modifying an existing ordinary differential equation model of systemic inflammation to simulate local wound healing, we expect to improve the understanding of the underlying complexities of wound healing and thus allow for the development of novel, targeted therapeutic strategies.
View Article and Find Full Text PDFCertain inhaled chemicals, such as reactive, water-soluble gases, are readily absorbed by the nasal mucosa upon inhalation and may cause damage to the nasal epithelium. Comparisons of the spatial distribution of nasal lesions in laboratory animals exposed to formaldehyde with gas uptake rates predicted by computational models reveal that lesions usually occur in regions of the susceptible epithelium where gas absorption is highest. Since the uptake patterns are influenced by air currents in the nose, interindividual variability in nasal anatomy and ventilation rates due to age, body size, and gender will affect the patterns of gas absorption in humans, potentially putting some age groups at higher risk when exposed to toxic gases.
View Article and Find Full Text PDFDifferences in nasal anatomy among human subjects may cause significant differences in respiratory airflow patterns and subsequent dosimetry of inhaled gases and particles in the respiratory tract. This study used computational fluid dynamics (CFD) to study inter-individual differences in nasal airflow among four healthy individuals. Magnetic resonance imaging (MRI) scans were digitized and nasal-surface-area-to-volume ratios (SAVR) were calculated for 15 adults.
View Article and Find Full Text PDFMany studies suggest limited effectiveness of spray devices for nasal drug delivery due primarily to high deposition and clearance at the front of the nose. Here, nasal spray behavior was studied using experimental measurements and a computational fluid dynamics model of the human nasal passages constructed from magnetic resonance imaging scans of a healthy adult male. Eighteen commercially available nasal sprays were analyzed for spray characteristics using laser diffraction, high-speed video, and high-speed spark photography.
View Article and Find Full Text PDFArch Otolaryngol Head Neck Surg
December 2005
Objective: To investigate the aerodynamic consequences of conservative unilateral inferior turbinate reduction using computational fluid dynamics methods to accomplish detailed nasal airflow simulations.
Design: A high-resolution, finite-element mesh of the nasal airway was constructed from magnetic resonance imaging data of a healthy man. Steady-state, inspiratory airflow simulations were conducted at 15 L/min using the techniques of computational fluid dynamics.