Purpose: To compare machine learning methods for classifying mass lesions on mammography images that use predefined image features computed over lesion segmentations to those that leverage segmentation-free representation learning on a standard, public evaluation dataset.
Methods: We apply several classification algorithms to the public Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM), in which each image contains a mass lesion. Segmentation-free representation learning techniques for classifying lesions as benign or malignant include both a Bag-of-Visual-Words (BoVW) method and a Convolutional Neural Network (CNN).
Published research results are difficult to replicate due to the lack of a standard evaluation data set in the area of decision support systems in mammography; most computer-aided diagnosis (CADx) and detection (CADe) algorithms for breast cancer in mammography are evaluated on private data sets or on unspecified subsets of public databases. This causes an inability to directly compare the performance of methods or to replicate prior results. We seek to resolve this substantial challenge by releasing an updated and standardized version of the Digital Database for Screening Mammography (DDSM) for evaluation of future CADx and CADe systems (sometimes referred to generally as CAD) research in mammography.
View Article and Find Full Text PDF