Recent clinical evidence indicates that the broad spectrum anticonvulsant drug lamotrigine is effective against the depressive phase of bipolar illness and the difficult to treat rapid cycling form of the disorder. However, the molecular mechanism underlying this therapeutic action remains uncertain. Given that inhibition of the A-type of monoamine oxidase (MAO) is a proven antidepressant mechanism, we investigated the effects of lamotrigine on MAO activities in vitro and on monoamine disposition in vivo.
View Article and Find Full Text PDFThe novel putative anticonvulsant drug 1-[2,6-difluorophenyl)-methyl]-1H-1,2,3-triazolo[4,5-c]) pyridine-4-amine monohydrochloride (BW534U87) effectively reduced seizures induced in rodents by threshold maximal and supramaximal electroshock, electrical kindling, pentylenetetrazole (PTZ) infusion and by vestibular stimulation in the genetically seizure-prone epilepsy-like (EL) mouse. The range of animal seizure models in which BW534U87 was effective is consistent with a broad spectrum anticonvulsant profile. In the EL mouse, the activity of BW534U87 was partially reversed by predosing with the selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), suggesting that an adenosine-dependent mechanism contributed to the antiseizure activity of the drug.
View Article and Find Full Text PDF